

Aerospace and Defense

Detection and Sensing Technical Catalog

Limit Switches

Proximity Switches

Proximity Sensors

www.crouzet.com

Crouzet Aerospace actively con

HISTORICAL PARTNER AND PROVEN EXPERTISE IN AERONAUTICS

Crouzet Aerospace has been producing High Performance Aerospace components for over forty years and has secured a leading role in three Product lines dedicated to aerospace applications:

- Detection and Sensing: Limit switches, Proximity switches and sensors
- Electrical Protection and Distribution: Circuit Breakers & Circuit Breaker panels, Solid State Power Controllers
- Cockpit Equipment: Control Wheels, Helicopter grips, Buttons
 Today Crayzet Agreement's components can be found on most re-

Today Crouzet Aerospace's components can be found on most major fixed wing programs around the world, including Europe, North & South America & the Far East.

To ensure the necessary quality, all Crouzet Aerospace High Performance components are manufactured at our facilities in Valence, France and Casablanca, Morocco. These facilities are fully certified to EN 9100, ISO 9001, ISO 14001 (all materials & processes are environmentally friendly), EASA part 21/G and part 145.

Custom Sensors & Technologies (CST) is a specialist in sensing, control and motion products.

Through its brands, BEI Kimco, BEI Sensors, BEI PSSC, Crouzet, Crydom, Kavlico, Newall and Systron Donner Inertial, CST offers customizable, reliable and efficient components for mission-critical systems in Aerospace & Defence, Transportation, Energy & Infrastructures, Commercial OEMs and Industrial OEMs, Medical, Food and Beverage and Building Equipment markets.

Focused on premium value offers and committed to excellence, CST, with 4400 employees worldwide and sales of \$604M US in 2012, is the dependable and adaptable partner for the most demanding customers.

www.cstsensors.com

QUALITY OF SERVICE THROUGHOUT THE PROGRAM

We remain at your side throughout the life of the program.

- We have the in-house expertise to insure manufacturing engineering goes smoothly
- We use up-to-date logistic tools such as IDE, to provide quality service
- Our quality is of the highest level, ISO 9001, ISO 14001, EN/AS/JISQ/9100 P3
- Our production organisation is EASA part 21 approved
- Our after-market services, EASA part 145 approved, include a specific customer support department, distributors all around the world, and an AOG service
- NATO code: FA0X2

tributes to its customer success

TRIM AFCS

CONTENTS	Limit Switch for Helicopter Folding Tail function	46
Standards Technical Basis	Limit Switch for thrust reverser door Upper Secondary Lock function	
Hermetically sealed microswitch Types 83 151 (-55 °C to 150 °C)	Electronic	
Hermetically sealed microswitches with accessories	Position detectors. Detection principle	
Hermetically sealed microswitches High pressure from 2 to 6 bar	for proximity switches and two parts sensors Proximity Sensor	
Hermetically sealed microswitches Types 83 151 (250 °C)	Rectangular passive sensor for doors function Proximity Sensor	56
Limit Switches Based on hermetically sealed microswitches (250 °C)15	Round passive sensor for landing gear function Proximity Switch	58
Limit Switches Based on hermetically sealed microswitches (150°C)16	for thrust reverser actuator function Proximity Switch	60
Basic Sensitive microswitch Type 83 141 002 (-55°C to +150°C)	All Metal for thrust reverser actuator function Proximity Switch	62
Waterproof limit switches Type 83 777 based on Sensitive microswitch	for landing gear function	64
Waterproof limit switches	Proximity Switch All metal for landing gear function	66
Type 83 778 based on Sensitive microswitch	Proximity Switch High pressure for wind turbine function	68
Mechanical Position detectors	Proximity Switch High pressure for landing gear function	70
Limit Switch for thrust reverser door Tertiary Lock function	Proximity Switch for cargo loading system function	72
Limit Switch for thrust reverser door Stow function	Proximity Switch for landing gear function.	76
Limit Switch for thrust reverser Maintenance Test Enable function30	Proximity Switch for thrust reverser actuator function.	78
Limit Switch for thrust reverser actuator function		
Limit Switch for Trimmable Horizontal Stabilizer Actuator (THSA) function	Terminology Forces - Positions - Travel.	0′
Limit Switch for Slat function	i ologo - Fositiono - Itavel	0∠
Limit Switch for thrust reverser door Deploy function		
Limit Switch for thrust reverser actuator function		

A range of products adapted market of Detection around the

In order to best serve a large diversity of applications, Crouzet Aerospace offers a wide range of standard products.

From the 1-pole simple plunger switch to the 3-pole adjustable-roller plunger switch, also Crouzet Aerospace offers a complete range of high-performance products which optimise volume and weight whilst functioning over a wide current range from 1 mA to 7 A.

Our extensive range is also aimed at cost reduction and rationalized stock control, and enables you to have one supplier who can ensure quality and reliability at the best price.

The aim of this document is to enable the reader to familiarise themselves with our range and to choose the product most suited to their requirements. Nevertheless, please do not hesitate to contact our representatives who are always available for advice and can supply you with additional information.

PARTNERSHIP

In response to specific customer requirements for limit switches, proximity switches and/or proximity sensors in severe environments, Crouzet Aerospace offers an active partnership based on 40 years of experience.

This involves interpretation of such requirements, advice, involvement in specification development, research, prototypes, manufacture and performance testing of products.

Furthermore, Crouzet Aerospace actively participates in the competitiveness of its customers' programmes. Expertise in high-performance logistics and production methods, associated with a total quality approach, minimises the global costs of product procurement and operation.

This gives increased delivery reliability, reduction in production cycles and therefore stock, product acceptance by the customer without checks etc.

Through its subsidiaries and agents, and in particular in Europe, U.S.A. and Asia, Crouzet Aerospace offers its customers efficient commercial assistance and after-sales support.

Crouzet Aerospace locations

Customers locations

IN ALL CASES, CROUZET AEROSPACE WILL FIND A WAY!

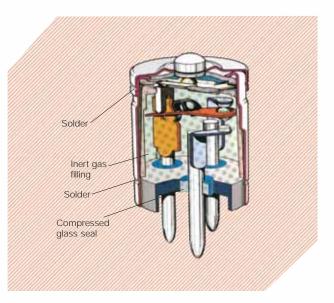
With Crouzet Aerospace's expertise in mechanical position detectors, Crouzet Aerospace offers a range of standards product, but has the ability and capacity to develop specific components, entirely adapted to the application into its environment.

Today, Crouzet Aerospace is a market leader in this technology for customised products.

COMMERCIAL AIRCRAFT

	A300	
	A310	
	A318/A319	
	A320/A321	
	A330	
AIRBUS	A340	
	A340 COMBI	
	A340 500/600	
	A350	
	A380	
ANTONOV	An-148	
ATR	42/72	
AVIC	ARJ 21	
BAE	146	
202110	717	
BOEING	747-8	
	787	
	GLOBAL EXPRESS / GLOBAL 5000	
	CRJ 700	
	CHALLENGER 300	
BOMBARDIER	CHALLENGER 601	
	LEARJET 60	
	LEARJET 45	
	LEARJET 85	
CASA	C212	
	SOVEREIGN	
CESSNA	FALCON 900/900 EX/ 2000 / 2000 EX	
	FALCON 7X	
	DO 228/328	
DORNIER	DO 728	
DIAMOND AIRCRAFT	D-JET	
ECLIPSE	ECLIPSE 500	
	ERJ 135/145	
EMBRAER	LEGACY 450/500	
	G 150	
	G 250	
GULFSTREAM	G 450	
	G 200	
	G 650	
HAWKER HORIZON	HAWKER HORIZON	
	PC-7/PC-9	
PILATUS	PC-12	
SUKHOI	SUPERJET 100	

HELICOPTERS


AGUSTA-WESTLAND	A129
AGGOTA WEGTEARD	EH101
	SUPER PUMA AS332 / AS225
	COUGAR AS532 /EC725
	GAZELLE
	DAUPHIN
	ECUREUIL AS 350 /AS 355 EC130
EUROCOPTER	FENNEC AS550 /AS555
	PANTHER AS565
	EC120 / 135 / 145 /155 / 165 / 365 / 635
	EC 175
	NH 90 Marine
	TIGER
HAL	ALH

MILITARY AIRCRAFT

AIRBUS	A400M
CASA	CN235
DASSAULT	RAFALE/MIRAGE
EUROFIGHTER	EFA
HAL	IJT36
KAI	T50
RAYTHEON	JPATS
TORNADO	TORNADO

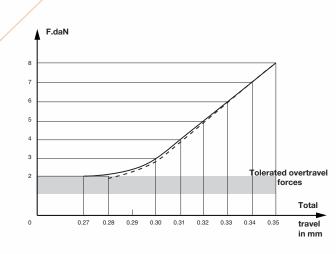
Hermetically sealed microswitch Types 83 151 (-55°C to 150°C)

BASIC CELL

This is the basic component for our whole range of standard 1-pole and 2-poles hermetically-sealed limit switches plus the 3-poles version (special Limit Switches).

The Crouzet Aerospace hermetic microswitch combines a snap-action switching system with high resistance to shock and vibration in an hermetically sealed miniature case which encloses an atmosphere of inert gas around its contacts, ideal for switching very low level circuits and higher currents also.

The meticulous care taken in the manufacture of this hermetically sealed cell in terms of assembly processes, cleanliness of components as well as inspection procedures, result in a product which is ideal for operation in severe environments where a high level of reliability is essential.

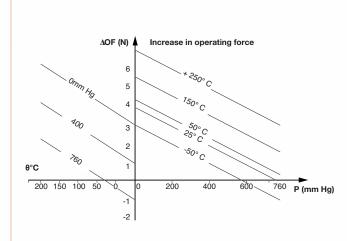

The Crouzet Aerospace hermetically sealed cell is particularly well suited to sectors such as Aerospace, Armaments, Marine, Nuclear, etc.

ESSENTIAL CHARACTERISTICS

- Switching power from 1 mA to 7 A.
- Operating temperature: -55 °C to +150 °C (Type 83 151 2: -55 °C to +250 °C).
- Vibration resistant up to 80 G.
- Shock resistant up to 200 G.
- High level of hermetic sealing: Leakage < 1 × 10⁻⁶ cm³ He/s
- Long life: 200 000 cycles.
- Small size: Ø11 x 16.
- Numerous single pole and multipoles operating and fixing options.

DISTINCTIVE CHARACTERISTICS

Mechanical strength


There is no sudden increase in the total travel of the detector when overtravel forces rising to as much as 80 N are applied. If, after doing this, the overtravel force is altered back to its normal level of 20 N with the same detector, only a very slight change will be apparent in the total travel (low remanence).

The detector will suffer damage if the overtravel force is raised to as much as 150 N.

Hermetic sealing

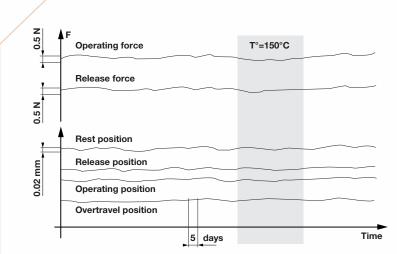
- The microswitch is filled with inert gas (nitrogen-hydrogen mixture), the internal pressure being 1 bar.
- The hermetic sealing (membrane-cap cap-base) is achieved with a continuous seam welding bead.

Performance in qualification helium test condition. Qualification value: 1×10^{-8} atm cm³/s.

Change in operating force as a function of temperature and ambient pressure.

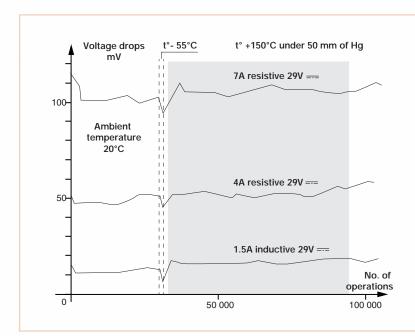
The force levels required to operate our hermetically sealed microswitches are affected by ambient pressure and temperature.

Here we give a graph showing how the operating force increases (\triangle OF) as a function of these two parameters.


The characteristics are given for standard temperature (23 °C) and atmospheric pressure at sea level (760 mm Hg).

Our hermetically sealed microswitches can be used at pressures ranging from atmospheric to absolute vacuum and there are variants for use at higher pressures.

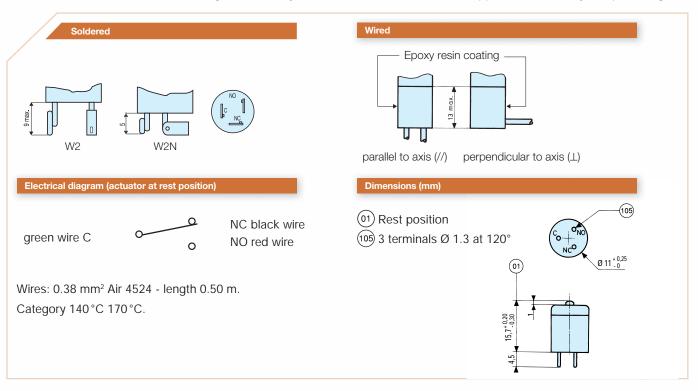
Hermetically sealed microswitch Types 83 151 (-55°C to 150°C)


Reliability of characteristics

Below are two test extracts showing the stability of the essential characteristics over time and as a function of temperature.

Travels and forces

Change in the characteristics concerned under a constant load of 25 Newtons applied to the operating device.


Voltage drops

Change in this characteristic in accordance with Air 8459 method - for 1.5-4 and 7 Amp load.

CONNECTIONS

Electrical connections are made through the base, by three ferronickel terminals, with copper core, sealed by compressed glass.

PERFORMANCE DATA

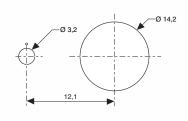
Product characteristics		Value	Unit	Under
Min. Current		1	mA	5 V DC
Nominal Current				
	Resistive	3	A	48 V DC (1)
	Lamp	1	A	115 V - 400 Hz
	Lamp	2	A	30 V DC (1)
	Resistive	3	A	30 V DC (1)
	Inductive L/R = 0.005 s	1.5	A	30 V DC (1)
	Resistive	1	A	220 V AC
	Inductive - cos φ 0.8	0.4	A	220 V AC
Service life at nominal current (3)		200 000	Cycles	
Dielectric rigidity between connections and ground		1 200	V	
Rigidity between connections		1 000	V	
Insulation resistance (at 500 V DC)		100	ΜΩ	
Voltage drop at 1 A (2)		0.02	V	
Operating temperature		-55 to +150	°C	
Shock resistance (3)		200/11	G/ms	
Vibration resistance		80/20 → 2 000	G/Hz	

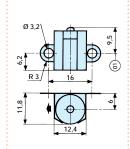
(1) for a service life of 100 000 cycles - Permitted current 4 A inductive 7 A resistive for normally open or normally closed contacts. (2) Over soldered connections - for wired connections add 0.1 V per meter. (3) Value for microswitch without auxiliary actuator

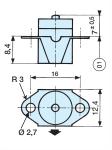
Hermetically sealed microswitch with accessories

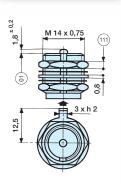
BASIC CELL (-55 °C TO +150 °C) TYPE 83 151 001

Criteria	Connections	with lateral flange	with 90° flange	Threaded barrel fixing
Pole(s)		1	1	1
Caldavad as masstices	W2	83 151 012	83 151 014	83 151 013
Soldered connections	W2N	83 151 042	83 151 044	83 151 043
Wine 0.20 mans ² 0.5 malana	with parallel wires	83 151 022	83 151 024	83 151 023
Wire 0.38 mm ² - 0.5 m long	with perpendicular wires	83 151 032	83 151 034	83 151 033

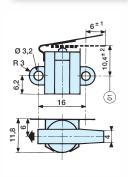

Characteristics	Unit			
Max. Operating force	N	10	10	10
Min. Release force	N	1.5	1.5	1.5
Permitted Overtravel force	N	20	20	20
Positive Overtravel stop		i		i i
Service life	Operations - min	200 000	200 000	200 000
Max. Pre-travel	mm	0.25	0.25	0.25
Max. Differential travel	mm	0.05	0.05	0.05
Min. Overtravel	mm	0.08	0.08	0.08
Weight (without wires)	g	5	5	13

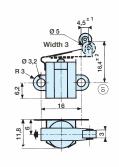

Dimensions (mm)

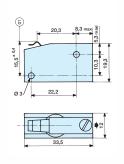

Add the dimensions of the various connections to find the total dimensions

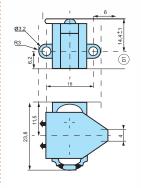

- indicates the wire direction
- (01) Tripping point
- (111) Nut h 2.5 x 17/flat

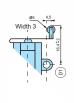
Panel cut-out





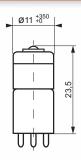





with lateral flange + lever	with lateral flange + roller lever	Housing + lever	with lateral flange + lever	with lateral flange + roller level
1	1	1	2	2
83 560 011	83 560 012	83 560 014	83 560 311	83 560 312
83 560 041	83 560 042	83 560 049	83 560 341	83 560 342
83 560 021	83 560 022	83 560 030	83 560 321	83 560 322
83 560 031	83 560 032	83 560 039	83 560 331	83 560 332
5	5	2.5 → 8	15	15
0.5	0.5	1.5	1.5	1.5
		50		
		•	i i	
100 000	100 000	100 000	100 000	100 000
6	6	0.3 → 0.75	6	6
0.8	0.8	0.3	1.5	1.5
0.4 → 0.8	0.4 → 0.8	0.3	0.4 → 0.8	0.4 → 0.8
6	7	01	10	10

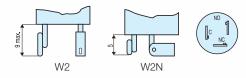
Hermetically sealed microswitch High pressure from 2 to 6 bar

WITH BASIC CELL (-55 °C TO +150 °C)


These variants of the basic type 83 151 feature a compensating system which allow them to be used at pressures above atmospheric.

For other characteristics please refer to basic model type 83 151 0

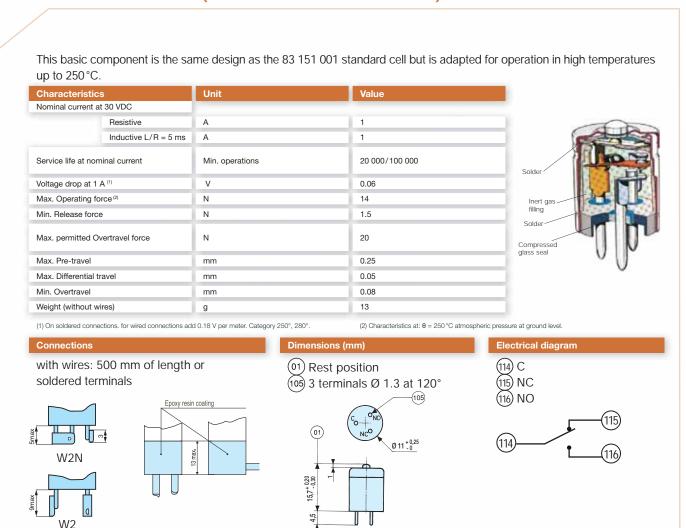
Characteristics				
Permitted pressure	Bar	2	6	
Max. Operating force *	N	25	47	
Max. permitted Overtravel force *	N	45	80	
Min. Release force *	N	11	22	
Weight (without leads)	g	8,5	8,5	

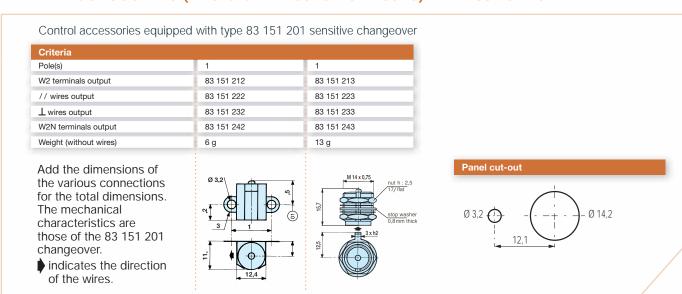

^{*} Figures at atmospheric pressure at ground level

Dimensions (mm)

Connections

W2 Ref. 83 151 504 W2N Ref. 83 151 503




Notes

Hermetically sealed microswitches Types 83 151 (250 °C)

WITHOUT ACCESSORIES (BASIC CELL -55°C TO +250°C) TYPE 83 151 201

WITH ACCESSORIES (BASIC CELL -55 °C TO +250 °C) TYPE 83 151 201

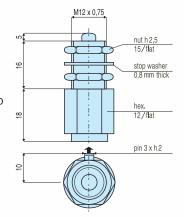
Limit Switches - Based on hermetically sealed microswitches (250°C)

BASIC CELL (-55°C TO +250°C) TYPE 83 151 201

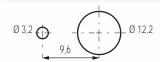
Criteria	
Pole(s)	1
W2 terminals output	83 770 211
/ wires output	83 770 221
L wires output	83 770 231
W2N terminals output	83 770 241

Dimensions (mm)

Add the dimensions of the various connections to find the total dimensions


Mechanical characteristics:

- Max. operating force- Min. release force22 N1.5 N


- Max. permitted overtravel force 50 N positive overtravel stop

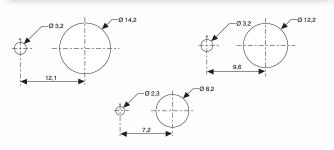
- Pre-travel
- Max. differential travel
- Min. overtravel
- Weight (without wires)
0.1 to 0.3 mm
0.05 mm
3 mm
20 g

indicates the direction of the wires

Panel cut-out

Limit Switches Based on hermetically sealed mi

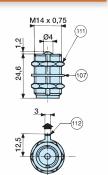
MECHANICAL CAPACITY


We have adapted the telescopic sub-assemblies for our hermetically sealed microswitch according to pressure and operating temperature requirements. Our products can therefore be used at atmospheric pressure or in an absolute vacuum and at a temperature of -50 °C to +150 °C.

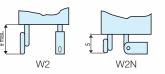
BASIC CELL (-55 °C TO +150 °C) TYPE 83 151 001

Criteria	Connections	Short travel
Pole(s)		1
Soldered connections	W2	83 770 012
	W2N	83 770 042
Wire 0.38 mm ² 0.50 m long	with parallel wires	83 770 022
	with perpendicular wires	83 770 032

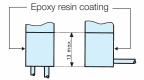
Characteristics	Unit	
Max. Operating force	N	12
Min. Release force	N	1.5
Permitted Overtravel force	N	20
Positive Overtravel stop		
Max. Pre-travel	mm	0.3
Max. Differential travel	mm	0.05
Min. Overtravel	mm	1
Shock resistance	G/ms	100/11
Vibration resistance	G/Hz	50/800 → 2 000
Weight (without wires)	g	21
Service life	Operations - min	100 000


Panel cut-out

Dimensions (mm)


Add the dimensions of the various connections for the total dimensions

- indicates the direction of the wires
- (30) Ball bearing Ø 3
- (106) Nut h 2 11/flat
- (107) Stop washer 0.8 thick
- (111) Nut h 2.5 17/flat
- (112) Locating pin h.2
- (120) Nut h 2.5 15/flat



Connections

Soldered

Wired

Wires: 0.38 mm² Length: 0.50 m

Category 140°C 170°C

parallel to axis (//) perpendicular to axis (⊥)

croswitches (150°C)

Plunger	Ball plunger	Roller Plunger	Plunger
1	1	1	2
3 770 011	83 770 014	83 770 015	83 771 011
3 770 041	83 770 044	83 770 045	83 771 041
3 770 021	83 770 024	83 770 025	83 771 021
33 770 031	83 770 034	83 770 035	83 771 031
2	12	12	30
.5	1.5	1.5	3
0	50	50	80
	•	•	•
1.3	0.3	0.3	0.5
0.05	0.05	0.05	0.15
3	3	3	5
00/11	100/11	100/11	100/11
50/800 → 2 000	50/800 → 2 000	50/800 → 2 000	50/800 → 2 000
5	15.5	20	47.5
100 000	100 000	100 000	100 000
M8 x 0.75 04 108 109 109	30 M8 x 0.75 (106) (107) (108)	20 08 M12 x 0,75 (17) (17) (17) (17) (17) (17) (17) (17)	05 (20) 80 (107) 107)

TRIM: AFCS

O NO red wire

Electrical diagram (actuator at rest)

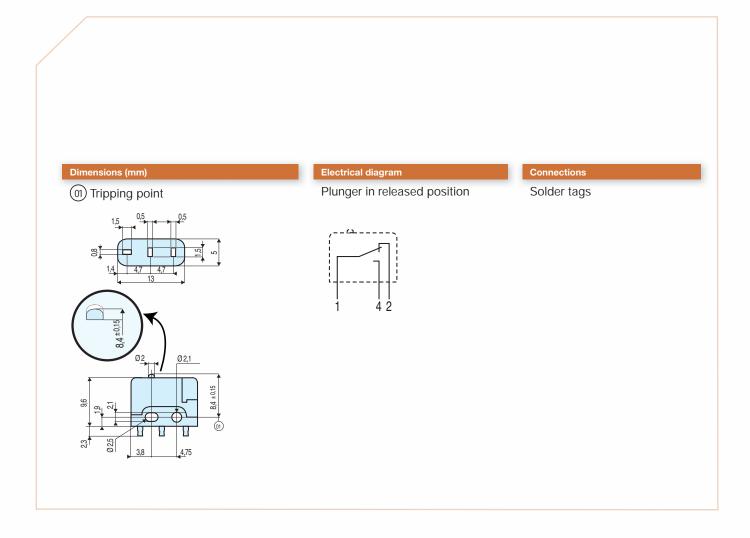
| Detection and Sensing

Basic Sensitive microswitch Type 83 141 002 (-55°C to +150°C)

WITHOUT ACCESSORIES

This microswitch is notable for its excellent performance in a very compact space (13 x 10 x 5 mm).

It is the basic element of our range of standard 1-pole, 2-poles, 3-poles waterproof Limit Switches, and special 4-poles Limit Switches.


The meticulous care taken in the manufacture of this microswitch in terms of assembly processes, cleanliness of components as well as inspection procedures, results in a product which is ideal for operation in severe environments where a high level of reliability is essential. It is particularly well suited to the Aerospace, Armaments, Marine sectors, etc.

This microswitch, used in our 83 777 and 83 778 series limit switches, combines a reliable snap-action switching system with high resistance to shocks and vibrations, ideal for switching both very low level and high currents.

Characteristics	Under	Unit	Value
Nominal current	10 VDC	А	0.01
Resistive	30 VDC	Α	4
Resistive	220 VAC	Α	1
Inductive L/R = 0.005 s	30 VDC	Α	2
Inductive L/R = 0.005 S	220 VAC	Α	0.5
Service life at nominal current		operations - min.	100 000
Operating temperature		°C	-55 to +150
Max. Operating force		N	2
Min. Release force		N	0.4
Max. Pre-travel		mm	0.5
Max. Differential travel	mm	0.08	
Min. Overtravel		mm	0.1
Weight		g	1

^{*} Value for microswitch without auxiliary actuator

Waterproof limit switches Type 83 777 based on Sensitiv

This range of limit switches satisfies applications which require lightweight miniature devices without sacrificing mechanical and electrical performance.

They are particularly well suited to severe environments such as: Aerospace, Armaments, Marine, etc.

The plungers for this range of limit switches are equipped with an ice-scraper seal.

BASIC SENSITIVE MICROSWITCH 83 141 002

Simple plunger

Nominal currer	nt	10 VDC	Α	0.01
	Resistive	30 VDC	А	4
	Resistive	220 VAC	Α	1
	Inductive L/R	30 VDC	Α	2
	= 0.005 s	220 VAC	Α	0.5
Service life at r	nominal current		operations - min.	50 000
Dielectric strer	ngth between connection	s and ground	V	1 500
Dielectric strength between connections			V	1 000
Insulation resistance (at 500 VDC)			ΜΩ	100
Insulation resis	stance (at 500 VDC)			
			V	0.06
Voltage drop a	t 1 A*		V °C	0.06 -55 to +125
Voltage drop a Operating tem Shock resistan	t 1 A* perature		_	

4	4 0		0-1	\//
^	for flying	leads,	add U. I	V/ meter.

Connections

Wires: 0.38 mm² - 0.50 m long

- Output parallel to device axis,
- Output perpendicular to device axis

Connector: type HE 301

- NFC 93422
- MIL.C 26482.G series 1
- VG 95328

Electrical diagram

Plunger in released position

- 1 pole

- 2 poles

- 3 poles

Seal

We guarantee that our products are sealed to level IP 66.

Panel cut-out

(130) Pin h.2

Criteria

Connector

Connection wires

Characteristics Max. Operating force

Min. Release force

Max. Pre-travel

Min. Overtravel

Weight (with wires)

Max. Total travel force

Max. Differential travel

Dimensions (mm)

(112) Locating pin

(117) Free position

(107) Stop washer width 0.8

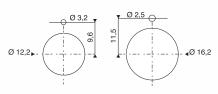
(118) Nuts h. 2.5 - 15 on flat (119) Nuts h. 3 - 21 on flat

parallel

perpendicular HE 301 1H 10 6P

HE 301 1H 12 10P

Ν


Ν

Ν

mm

mm

mm

For 1 & 2 poles

For 3 poles

e microswitch

pole	2 poles	3 poles	1 pole	2 poles	3 poles	1 pole	2 poles	3 poles
3 777 021	83 777 321	83 777 621	83 777 011	83 777 311	83 777 611	83 777 031	83 777 331	83 777 631
			•	•	•			
	•	•	:		:			
		:				•	•	
			:		•			•
		:			•			
		•			•	:		•
		•			•			•
)	60	60	60	60	60	60	60	60
)	10	18	10	10	18	10	10	18
50	150	150	150	150	150	150	150	150
2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
.2	0.5	0.5	0.2	0.5	0.5	0.2	0.5	0.5
.2	3.2	5.5	3.2	3.2	5.5	3.2	3.2	5.5
0	41	80	30	41	80	34	34	73
	77 021 77 321	83 777 621		77 011 77 311	83 777 611		77 031 77 331	83 777 631
 ←	M12 x 0,75	4 M16×100	+	M12 x 0,75	◀ ▶ M16×100	+	M12 x 0,75	M16 x 100
Ø 6	<u> </u> (17)	Ø 6 117 117	Ø 6 1 (12)	1 (17)	Ø 6 (112) (117)	Ø 6 1 (12)	1 17	Ø 6 (112)
(112)								
112							└	
112	222			222			9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
	9 22 22 22 2		107	16 16 17 17 17 17 17 17 17 17 17 17 17 17 17			16	
	222 1022			32 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2			16	
			107		02		46	02
			107		02			02
(1)			107		02	@ 175		
			107		02	@ 175	45	02
(1)			107		02	@ 175	45	02

Waterproof limit switches Type 83 778 based on Sensitiv

This range of limit switches satisfies applications which require lightweight miniature devices without sacrificing mechanical and electrical performance.

They are particularly well suited to severe environments such as: Aerospace, Armaments, Marine, etc.

The plungers for this range of limit switches are equipped with orientable roller.

BASIC SENSITIVE MICROSWITCH 83 141 002

Plunger with orientable roller in 45° steps

Nominal curre	ent	10 VDC	A	0.01
	Resistive	30 VDC	Α	4
	Hesistive	220 VAC	Α	1
	Inductive L/R	30 VDC	Α	2
	= 0.005 s	220 VAC	A	0.5
Service life at	nominal current		operations - min.	50 000
Dielectric strength between connections and ground			ν	1 500
Dielectric strength between connections			V	1 000
Insulation resistance (at 500 VDC)			ΜΩ	100
Voltage drop at 1 A*			V	0.06
Operating temperature			°C	-55 to +125
Shock resistance			G/ms	50/11
Vibration resistance				

*	for	flying	leads,	add	0.1	V/	meter.
---	-----	--------	--------	-----	-----	----	--------

Connections

Wires: 0.38 mm² - 0.50 m long

- Output parallel to device axis,
- Output perpendicular to device axis

Connector: HE 301 type

- NFC 93422
- MIL.C 26482. G series 1
- VG 95328

Seal

Electrical diagram

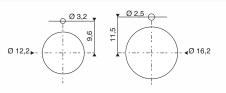
Plunger in released position

- 1 pole

- 2 poles

We guarantee that our products are sealed to level IP 66.

- 3 poles


Criteria parallel Connection wires perpendicular HE 301 1H 10 6P Connector HE 301 1H 12 10P

Characteristics	
Max. Operating force	N
Min. Release force	N
Max. Total travel force	N
Max. Pre-travel	mm
Max. Differential travel	mm
Min. Overtravel	mm
Weight (with wires)	g

Dimensions (mm)

- (107) Stop washer 0.8 thick
- (112) Locating pin
- (117) Free position
- (120) Nuts h. 2.5 and 6 15 on flat
- (121) Nuts h. 3 and 6 21 on flat
- (122) Roller Ø 9.6 Width. 3
- (123) Roller Ø 12.7 Width. 3
- (130) Pin h. 2

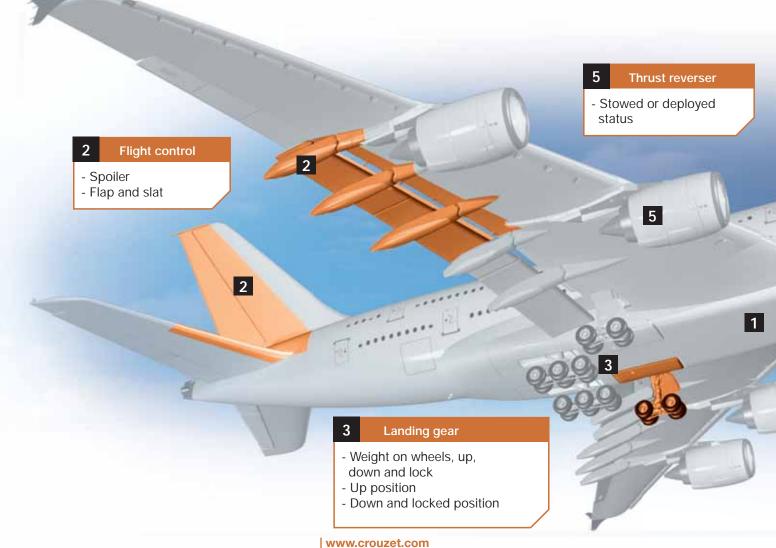
Panel cut-out

For 1 & 2 poles

For 3 poles

e microswitch

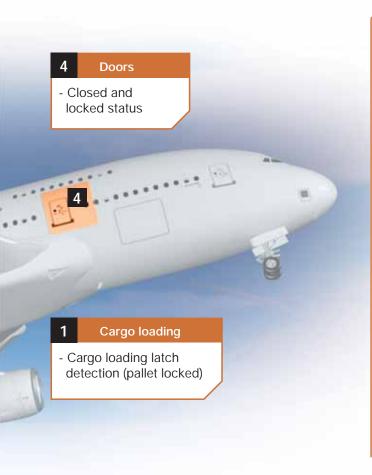
1 pole 83 778 021	2 poles 83 778 321	3 poles 83 778 621	1 pole 83 778 011	2 poles 83 778 311	3 poles 83 778 611	1 pole 83 778 031	2 poles 83 778 331	3 poles 83 778 631
		•						
								•
60	60	60	60	60	60	60	60	60
10	10	18	10	10	18	10	10	18
50	150	150	150	150	150	150	150	150
.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
0.2	0.5	0.5	0.2	0.5	0.5	0.2	0.5	0.5
3.2	3.2	5.5	3.2	3.2	5.5	3.2	3.2	5.5
37	46	87	37	46	87	40	40	80
	78 021 78 321	83 778 621		778 011 778 311	83 778 611	83 778 83 778		83 778 631
(175)	M12 x 0,75	M16 x 100	(8) (112) (9) (9) 17.5	M12 x 0,75	M16 x 100 (17) (2) (12) (3) (3) (4) (5) (6) (7) (7) (7) (7) (7) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	(3) (12) (10) (0) (0)	M12 x 0,75	M16 x 100
1	(122)	2 h 2,5		(12)	- III			. h 2,5


Mechanical Position detectors

IN ALL CASES, CROUZET AEROSPACE WILL FIND A WAY!

with Crouzet Aerospace's expertise in mechanical position detectors, Crouzet Aerospace offers a range of standard product, but has the ability and capacity to develop specific components, entirely adapted to the application into its environment.

Today, Crouzet Aerospace is a market leader in this technology for customised products.



CROUZET AEROSPACE PROVIDES UPON REQUEST:

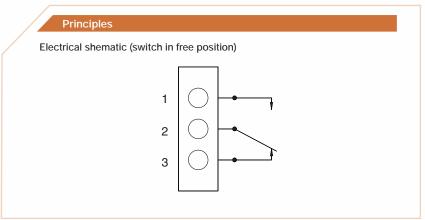
- Hermetic cells
- Special housings
- Cable or connector output
- Multi-pole functions
- Multi-actuation systems
- High speed actuation
- High temperature devices

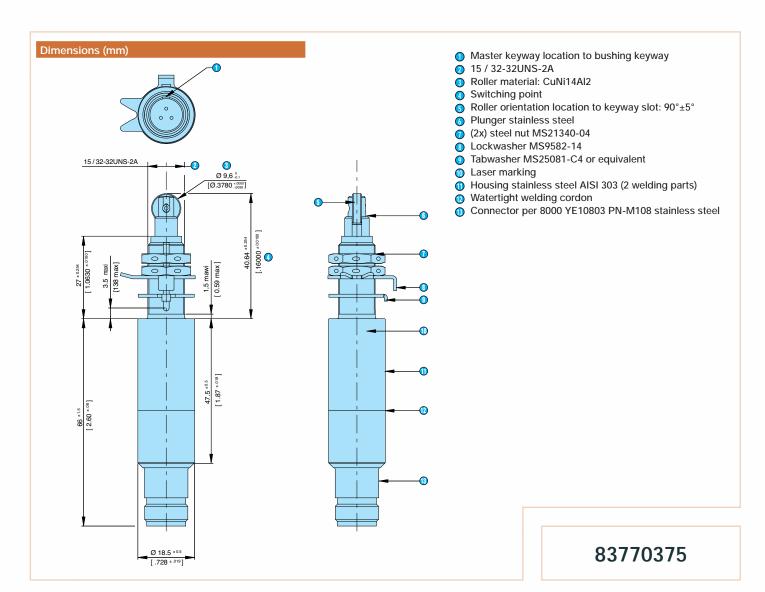
for thrust reverser door Tertiary Lock function2	26
Limit Switch for thrust reverser door Stow function	28
Limit Switch for thrust reverser Maintenance Test Enable function3	30
Limit Switch for thrust reverser actuator function	32
Limit Switch for Trimmable Horizontal Stabilizer Actuator (THSA) function	34
Limit Switch for Slat function	36
Limit Switch for thrust reverser door Deploy function	88
Limit Switch for thrust reverser actuator function40/42/4	14
Limit Switch for Helicopter Folding Tail function4	16
Limit Switch for thrust reverser door	12

Limit Switch for thrust reverser door Tertiary

83770375

Specifications


Part numbers


Condition	RTCA/DO-160E	Requirement
Operating low temperature	Section 4	Category F3 (-40 °F/-40 °C)
Operating high temperature	Section 4	Category F3 (+225°F/+108°C
Short-time operating temperature	Section 4	Category F3 (+225°F/+108°C
Ground survival low temperature	Section 4	Category F3 (-67°F/-55°C)
Ground survival high temperature	Section 4	Category F3 (+250 °F/+121 °C
Temperature variation	Section 5	Category A
Thermal shock	-	2 hours @ -67 °F (-55 °C), Operation: 5 cycles within 1 min
Altitude	Section 4	Category F3 (-2 000 to +55 000 feet)
Humidity, Waterproofness and Icing	-	CET Method I or II test
Operational shock	Section 7	Category A
Crash shock	Section 7	Category A
Vibration	Section 8	Category R, Curve W
Explosion	Section 9	Environment I, Category A
Fluid susceptibility	Section 11	Category F
Sand and Dust	Section 12	Category D
Fungus resistance	Section 13	Category F
Salt fog	Section 14	Category T
Magnetic effects	Section 15	Category Z
Power input	Section 16	Category A
Voltage spike	Section 17	Category A
Audio frequency conducted susceptibility	Section 18	Category Z
Induced signal susceptibility	Section 19	Category Z
Radio frequency susceptibility	Section 20	Category W
Emission of radio frequency energy	Section 21	Category H
Lightning-induced transient susceptibility	Section 22	Category A4/C4
ESD susceptibility	Section 25	Category A
Flammability	Section 26	Category A

Electrical characteristics	5
Minimum Operational voltage	12 VDC
Maximum Operational	32 VDC
voltage	02 400
Close circuit current	2 to 500 mA
Min. Open circuit resistance	
(Dry)	100 000 Ω
Max. Closed circuit	
resistance	10 Ω
Bonding resistance:	2.5 mΩ new,
(connector to switch body)	10 mΩ field service
Contacts	Gold, hermetically sealed
Insulation resistance	100 MΩ min at 68°F (20°C)
insulation resistance	at 500 V DC for 60 sec.
Dielectrical withstanding	1 060 V rms/50-60 Hz / 60: (II < 1 mA)

Mechanical characteristics		
Plunger impact speed	19 in/s (0,5 m/s) Max.	
Impact angle	6° Max.	
Actuator speed	150 in/s (4 m/s) Max.	
Shock	< 100 G 11 ms	
Weight	0.3 lb (130 g) Max.	
Mechanical lifetime	120 000 Cycles TBC	
Differiential travel	0.010 in (0.254mm) Max.	
Over travel	0.118 in (3 mm) Min.	
Operating force	6-12 lb (27-54 N)	
Full over travel force	20 lb (90 N) Max.	
Release force	3.4 lbs (15 N) Min.	

| Detection and Sensing

Limit Switch for thrust reverser door Stow fu

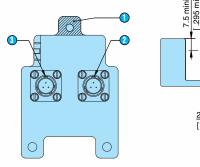
83990202

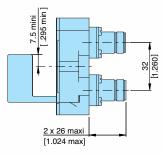
Specifications

Part numbers

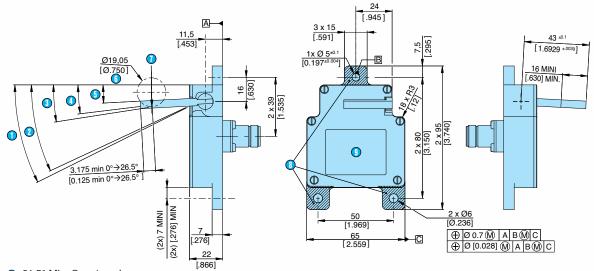
Condition	RTCA/DO-160E	Requirement
Operating low temperature	Section 4	Category F3 (-40 °F/-40 °C)
Operating high temperature	Section 4	Category F3 (+225°F/+108°C
Short-time operating temperature	Section 4	Category F3 (+225°F/+108°C
Ground survival low temperature	Section 4	Category F3 (-67 °F/-55 °C)
Ground survival high temperature	Section 4	Category F3 (+250°F/+121°C
Altitude	Section 4	Category F3 (-2 000 to +55 000 feet)
Temperature variation	Section 5	Category A
Humidity	Section 6	Category C
Operational shock	Section 7	Category B
Crash shock	Section 7	Category B
Vibration	Section 8	Category R, Curve W
Explosion	Section 9	Environment I Category A
Waterproofness	Section 10	Category S
Fluid susceptibility	Section 11	Category F
Sand and Dust	Section 12	Category D
Fungus resistance	Section 13	Category F
Salt spray	Section 14	Category T
Magnetic effects	Section 15	Category Z
Power input	Section 16	Category A
Voltage spike	Section 17	Category A
Audio frequency conducted susceptibility	Section 18	Category Z
Induced signal susceptibility	Section 19	Category Z
Radio frequency susceptibility	Section 20	Category W
Emission of radio frequency energy	Section 21	Category H
Lightning induced transient susceptibility	Section 22	Category A4/C4
lcing	Section 24	Category A
ESD susceptibility	Section 25	Category A

12 VDC
28 VDC
20 100
32 VDC
2 mA to 10 mA
50 ΚΩ
30 Ω
2.5 mΩ new 10 mΩ field service
10 mΩ field service
Gold, hermetically sealed
dold, Hermetically Sealed
100 MΩ min at 68 °F (20 °C)
at 500 V DC for 60 sec.
1 060 V rms/50-60 Hz/60 s
(II < 1 mA)
Watertight: MIL PRF 8805 S3


Mechanical characteristics		
Weight	0.670 lb (0.304 kg) max	
Mechanical lifetime	60 000 Cycles	
Release force	4.5 lb (21 N) max	
Operating force	6-12 lb (27-54 N)	
Full over travel force	20 lb (90 N) max	


Principles

Circuit diagram (switch show in free position)


Gold contacts

- Bonding surface optional
- Connectors EN2997-Y00803M6 Master key orientation ±10°
- Connectors EN2997-Y00803MN Master key orientation ±10°

Dimensions (mm)

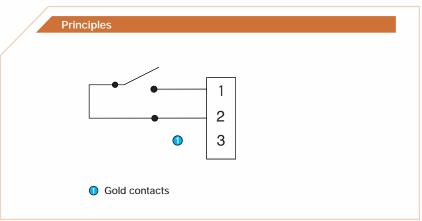
- 1 26.5° Min. Over travel
- 25° Max. Overstow position
- 9° Max. Min. Stow position
- () 6.5°±1.5 s Switch point () 3.5° -0.5°/+1° Rest position
- 6 Roller
- 0 Force
- Bonding surface (3x)
- Electrochemically or Laser marking area

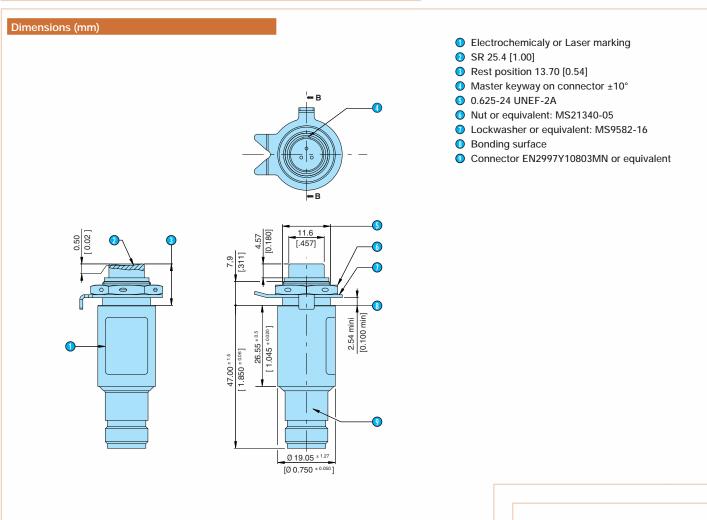
83990202

Limit Switch for thrust reverser Maintenance

Specifications

Part numbers


83770384


Condition	RTCA/DO-160E	Requirement
Operating low temperature	Section 4	Category F3 (-40°F/+40°C)
Operating high temperature	Section 4	Category F3 (+225°F/+108°C
Short-time operating high temperature	Section 4	Category F3 (+225°F/+108°C
Ground survival low temperature	Section 4	Category F3 (-67°F/-55°C)
Ground survival high temperature	Section 4	Category F3 (+250°F/+121°C
Altitude	Section 4	Category F3 (-2 000 to +55 000 feet)
Temperature variation	Section 5	Category A
Operational shock	Section 7	Category B
Crash shock	Section 7	Category B
Vibration	Section 8	Category R, Curve W
Explosion proofness	Section 9	Environment I Category A
Fluid susceptibility	Section 11	Category F
Sand and Fog	Section 12	Category D
Fungus resistance	Section 13	Category F
Salt spray	Section 14	Category T
Magnetic effects	Section 15	Category Z
Power input	Section 16	Category A
Voltage spike	Section 17	Category A
Audio frequency conducted susceptibility	Section 18	Category Z
Induced signal susceptibility	Section 19	Category Z
Radio frequency susceptibility	Section 20	Category W
Emission of radio frequency energy	Section 21	Category H
Lightning-induced transient susceptibility	Section 22	Category A4/C4
ESD susceptibility	Section 25	Category A
Flammability	Section 26	Category A
Thermal shock	1	Stab. 2h at -67 °F, 5 cycles within 1 min
Combined environment test	/	Method II

Electrical characteristics	5
Min. Operational voltage	12 VDC
Max. Operational voltage	32 VDC
Close circuit current	4 mA to 10 mA
Min. Open circuit resistance (Dry)	50 kΩ
Max. Closed circuit resistance	30 Ω
Bonding resistance (connector housing to switch body)	2.5 mΩ new, 10 mΩ field service
Contacts	Gold, hermetically sealed
Insulation resistance	100 MΩ min at 68 °F (20 °C) at 500 V DC for 60 sec.
Dielectrical withstanding	1 060 V rms/60 Hz/60 s (II < 1 mA)

Mechanical characteristics		
Impact speed	19 in/s (0.5 m/s) max Operating: 4 in/s (0.1 m/s)	
Weight	0.221 lb (0.100 kg) max	
Mechanical lifetime	20 000 Cycles	
Pre-travel	0.05 in (1.27 mm) max	
Differiential travel	0.010 in (0.25 mm) max	
Over travel	0.06 in (1.52 mm) min	
Operating force	3.15 lb (14 N) max	
Release force	0.68 lb (3 N) min	
Full over travel force	6.07 lb (27 N) max	

| www.crouzet.com

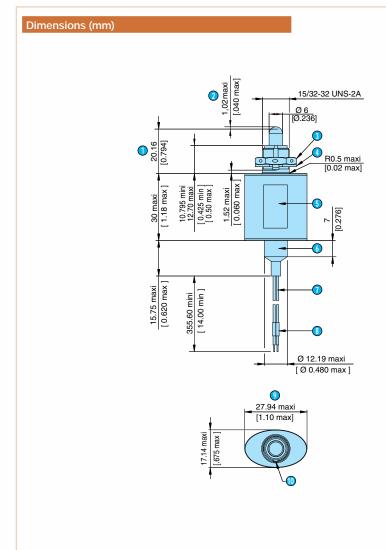
83770384

Limit Switch for thrust reverser actuator func

Specifications

Part numbers

83771009


Condition	RTCA/DO-160E	Requirement
Operating low temperature	Section 4	Category F3 (-40°F/-40°C)
Operating high temperature	Section 4	Category F3 (+225°F/+108°C
Short-time operating temperature	Section 4	Category F3 (+225°F/+108°C
Ground survival low temperature	Section 4	Category F3 (-67°F/-55°C)
Ground survival high temperature	Section 4	Category F3 (+250°F/+121°C
Altitude	Section 4	Category F3 (-2 000 to +55 000 feet)
Temperature variation	Section 5	Category A
Humidity	Section 6	Category C
Operational shock	Section 7	Category A
Crash shock	Section 7	Category A
Vibration	Section 8	Category R, Curve W
Explosion	Section 9	As required by design
Waterproofness	Section 10	Category S
Fluid susceptibility	Section 11	Category F
Sand and Dust	Section 12	Category D
Fungus resistance	Section 13	Category F
Salt spray	Section 14	Category T
Magnetic effects	Section 15	Category Z
Power input	Section 16	Category A
Voltage spike	Section 17	Category A
Audio frequency conducted susceptibility	Section 18	Category Z
Induced signal susceptibility	Section 19	Category Z
Radio frequency susceptibility	Section 20	Category W
Emission of radio frequency energy	Section 21	Category H
Lightning-induced transient susceptibility	Section 22	Category A4/C4
lcing	Section 24	Category A
ESD susceptibility	Section 25	Category A
Flammability	Section 26	Category A

Electrical characteristics	5
Min. Operational voltage	14 VDC
Nominal operating voltage	28 VDC
Max. Operational voltage	32 VDC
Closed circuit current	2 mA to 500 mA
Min. Open circuit resistance (Dry)	500 000 Ω
Max. Closed circuit resistance	10 Ω
Contacts	Gold, hermetically sealed
Insulation resistance	100 MΩ Min. at 68 °F (20 °C) at 500 V DC for 60 sec.
Dielectrical withstanding	1 060 V rms/60 Hz/60 s (II < 1 mA)

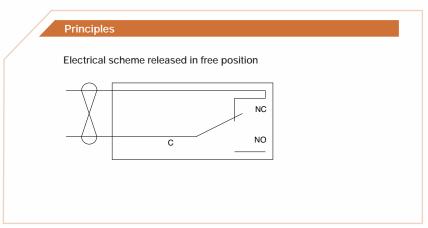
Mechanical characteristics		
Impact speed	1 in/s (25.4 mm/s) Max.	
Shock	< 100 G 11 ms	
Weight	0.260 Lb (0.118 Kg) Max.	
Mechanical lifetime	20 000 Cycles	
Differiential travel	0.020 in (0.5 mm) Max.	
Over travel	0.157 in (4 mm) Min.	
Operating force	6-14 Lb (27-62.5 N)	
Full over travel force	30 Lb (133 N) Max.	
Release force	3.4 Lb (15 N) Min.	

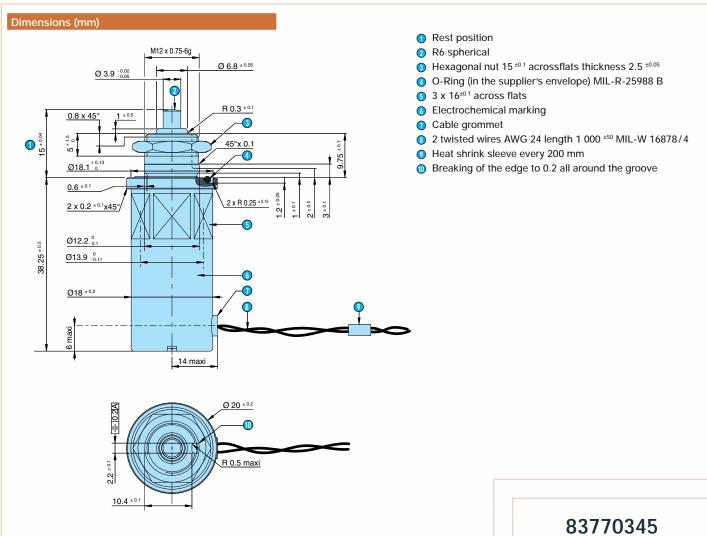
| www.crouzet.com

Circuit diagram (switch show in free position) 1 BLK 1D 1-20 BLK 1D 2-20 3 BLK 1D 3-20 4 BLK 1D 4-20 1 Gold contacts

- Switch point
- Pre-travel
- 1 Hex nuts MS21340-04 or equivalent
- (1) Keying washer: MS25081-C4 or equivalent
- 5 Laser or electrochemicaly etch
- Heat shrinkable boot per MIS-34867
- O Wire 24 AWG per NEMA HP3
- Sleeves marks
- View without nut and washer
- Meyway: [.078 ±.003] wide, [.040 ±.002] deep

83771009


Limit Switch for Trimmable Horizontal Stabili

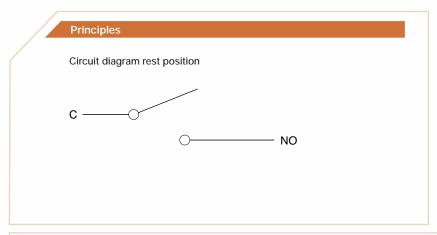


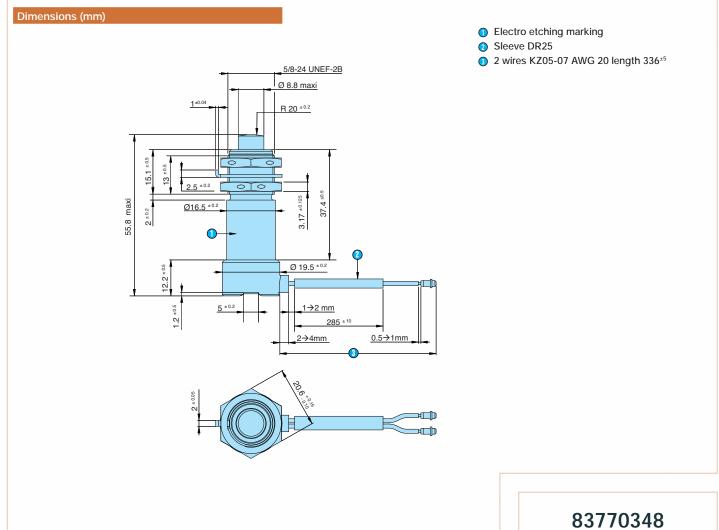
Specifications

Part numbers	8377034
Environment characteristics	
Operating temperature	-55°C to +90°C
Number of cycles head on	200
Max. Pre-travel	0.5 mm
Max. Movement differential	0.06 mm
Min. Overtravel	3 mm
Operating force on all the range of temperature	10 to 30 N
Min. Release force	6 N
Max. Total travel force	72 N
Speed of attack	0.7 m/s Max.
Max. Coupling torque	5 N.m
Traction on wires	15 N Max.
Weight	90 g Max.
Storage limit time	10 Years See: NF L 17-103

TRIM AFCS

Limit Switch for Slat function




Specifications

Part numbers 83770348

	re (23 °C) and atmospheric pressure at the sea level	. 0,
Operating temperature	-55 °C to +70 °C	
Exceptionnal operation during 5 minutes	+85 °C	
Storage temperature	-55 °C to +85 °C	
Number of cycles head on	100 000	
Max. Pre-travel	1 mm	
Max. Movement differential	0.5 mm	
Min. Overtravel	3 mm	
Operating force	25 to 55 N	
Max. total travel force	90 N	
Weight	79 g Max.	

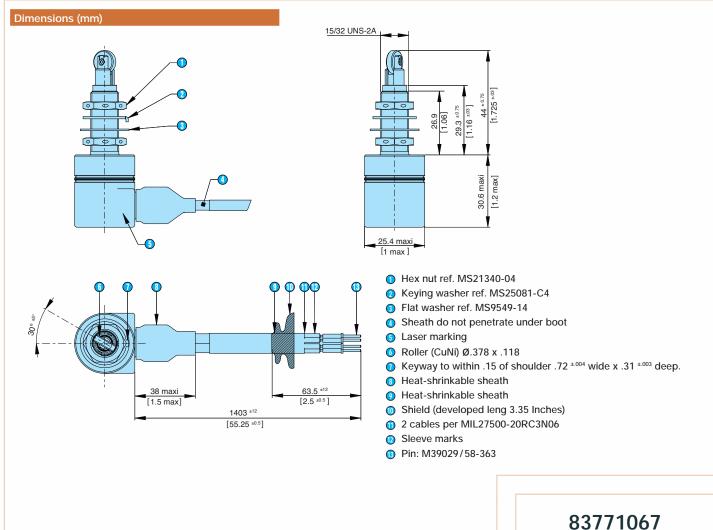
Limit Switch for thrust reverser door Deploy f

83771067

Specifications

Part numbers


Conditions	RTCA/DO-160D	Requirements
Equipment intended for installation n powerpoint	Section 4.3	Category D3
Operating low temperature	Section 4	Category D3 -40°C
Operating high temperature	Section 4	Category D3 +135 °C
Short time operating high temp.	Section 4	Category D3 +135 °C
Ground survival low temperature	Section 4	Category D3 -62 °C
Ground survival high temperature	Section 4	Category D3 +85 °C
Altitude	Section 4	Category D3 45000 ft
Temperature variation	Section 5	Category A
Humidity	Section 6	Category B
Operating shock	Section 7	Category B
Crash shock	Section 7	Category B
Vibrations	Section 8	Category H2
Explosion	Section 9	Category E2
Waterproofness	Section 10	Category R
Fluid susceptibility	Section 11	Category F Spray test
Sand and Dust	Section 12	Category D
Fungus resistance	Section 13	Category F
Salt spray	Section 14	Category S
Lightning induced transient susceptibility	Section 22	Category A4XX
cing	Section 24	Category B


Electrical characteristic	s
Normal Operating voltage	28 VDC
Max. Operating voltage	32 VDC
Normal Operating current	10 mA < I < 50 mA
Max. Operating current	100 mA
Contact resistance	125 mΩ Max.
Dielectric withstanding at atmospheric pressure	1 000 VRMS - 1 mA
Electrical bonding	$2.5~\text{m}\Omega$ between the bush and the beginning of the shield under the sleeve
Insulation resistance	100 MΩ at 500 VDC
Electrical Lifetime	100 000 Cycles
Contact bounce: (Checked during shocks and vibrations tests)	<5 ms

Mechanical characteristics

The characteristics are given for standard temperature (23 °C) and atmospheric pressure at the sea level (760 mm Hg). Braided shield grounded to body of switch for 360°.

Operating force	to be less than 12 lbs
Pretravel	0.04 inch Max.
Differential travel	0.02 inch Max.
Overtravel	0.125 inch Min.
Mechanical lifetime	100 000 Cycles
Weight	300 g Max.
Operating attack speeds	0.5 m/s Max.
Outstanded Max. attack speeds permitted	0.7 m/s
Product sealing	Watertight
Cell sealing	Hermetic

Limit Switch for thrust reverser actuator func

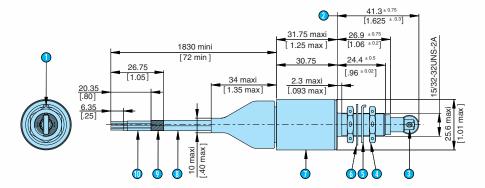
Specifications

Part numbers

83770350

Temperature	RTCA DO-160C (SECT.4 CAT.D3)
Temperature variation	MIL-STD-810E
Altitude	RTCA DO-160C (SECT.4 CAT.D3)
Humidity	RTCA D0-160C (SECT.6 CAT.B)
Operational shock	RTCA DO-160C SECT.7
Crash safety	RTCA DO-160C SECT.7
Vibration	RTCA DO-160C SECT.8 CURVE W
Explosion proofness	RTCA DO-160C SECT.9 CAT.E Environment II
Waterproofness	RTCA DO-160C SECT.10 CAT.R
Fluid susceptibility	RTCA DO-160C SECT.11 CAT.F SPRA TEST
Sand & Dust	RTCA DO-160C SECT.12 CAT.D
Fungus resistance	RTCA DO-160C SECT.13 CAT.F
Salt spray	RTCA DO-160C SECT.14 CAT.S
Lightning induced transient susceptibility	RTCA DO-160D SECT.22 CAT. A4××
Icing	RTCA DO-160C SECT.24 CAT. B

Electrical characteristics	
Normal Operating voltage	28 VDC
Max. Operating voltage	32 VDC
Normal Operating current	10 mA < I < 50 mA
Max. Operating current	100 mA
Contact resistance	≤ 260 mΩ
Dielectric strength at atmospheric pressure	1 000 VRMS - 1 mA
Electrical bonding	$25~\text{m}\Omega$ between the body and the beginning of the shield under the sleeve
Insulation resistance	100 MΩ 500 VDC
Electrical Lifetime: (according to C.CT.DEF.00060.GB)	100 000 Cycles
Contact bounce: (Checked during shocks and vibrations test)	< 5 ms


Mechanical characteristics

The characteristics are given for standard temperature (23 °C) and atmospheric pressure at the sea level (760 mm Hg). Braided shield grounded to body of switch for 360°.

Operating force	6 to 12 lbs
Full overtravel force	20 lbs Max.
Release force	4 pound Min.
Pretravel	0.040 inch Max.
Differential travel	0.020 inch Max.
Overtravel	0.125 inch Min.
Operating temperature	-55°C to +150°C
Operating attack speeds	0.5 m/s Max.
Attack speeds permitted	0.7 m/s Max.
Mechanical lifetime (according QTP: C.CT. DCO.00060.GB)	100 000 cycles
Weight	265 g Max.

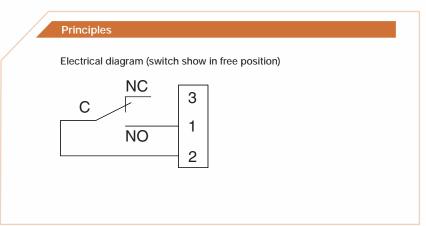
Circuit diagram (switch show in free position) Blue stripe Rep.7 White Rep.8 Case ground Blue stripe Rep.9 White Rep.10 Case ground Blue stripe Rep.10 Case ground Blue stripe Rep.11 White Rep.11

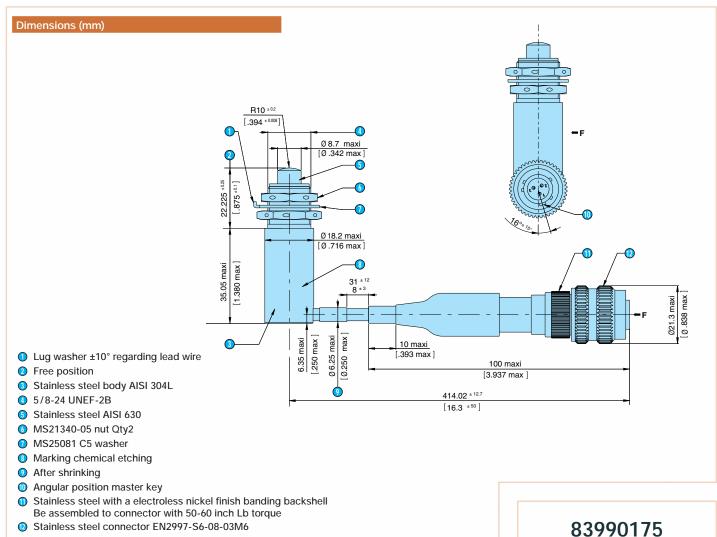
Dimensions (mm)

- \blacksquare Keyway to within .250 of shoulder .72 $^{\pm004}$ wide x .031 $^{\pm003}$ deep Roller is aligned with keyway: $\pm5^\circ$
- 7 Free position
- 3 Corrosion resistant material (CuNi) Ø.378/.374 x .118
- ① 2 x Hex nut per MS21340-04
- 1 x Keying washer per MS25081C4
- 1 x Flat washer per MS9549-14
- Laser marking
- 3 cables per MIL27500-22 RC2N06
- Shield
- Sleeve marks at the end of wires

Limit Switch for thrust reverser actuator func

Specifications


Part numbers 83990175


Environment characteristics	
Operating low temperature	-67°F
Operating high temperature	+257°F
Number of cycles head on	80 000

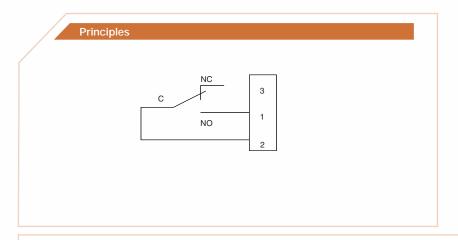
Electrical characteristics	
Open circuit voltage	17 VDC Max. 9 VDC Min.
Closed circuit current	2 to 20 mA

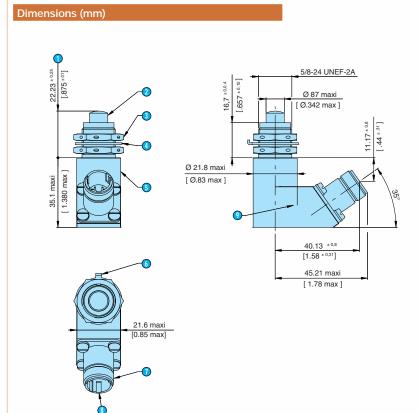
Mechanical characteristics	
Max. Pre-travel	0.040 in
Max. Differential travel	0.020 in
Min. Overtravel	0.125 in
Operating force	6-12 lbs
Max. Over travel force	20 lbs

| Detection and Sensing

Limit Switch for thrust reverser actuator func

Specifications


Part numbers

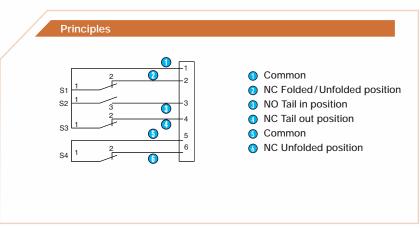

	RTCA/DO	-160D
Condition	Section	Category
Ground survival low temp. Operating low temperature	4	D3 at -67°F (- 55°C)
Ground survival high temp. Short time operating high temp. Operating high temperature	4	D3 at 257 °F (125 °C)
Altitude		-2 000 to 41 000 ft
Temperature variation	5	А
Humidity	6	С
Operational shock	7	В
Crash shock	7	B para 7.3.2 type 2
Vibration	8	R figure 8-2, curve W with 20 G to 3 000 Hz
Explosion proof	9	E2
Waterproofness	10	S
Fluid susceptibility	11	F (COMPATIBLE WITH SKYDROL)
Sand & Dust	12	D
Fungus	13	F
Salt spray	14	S
Power input	16	В
	17	А
	18	А
EMI	19	Z
	20	V
	21	Z
	22	Level 3
Lightning	23	2A per FAA advisory circula AC-20-136
lcing	24	В
Electrostatic discharge	25	A

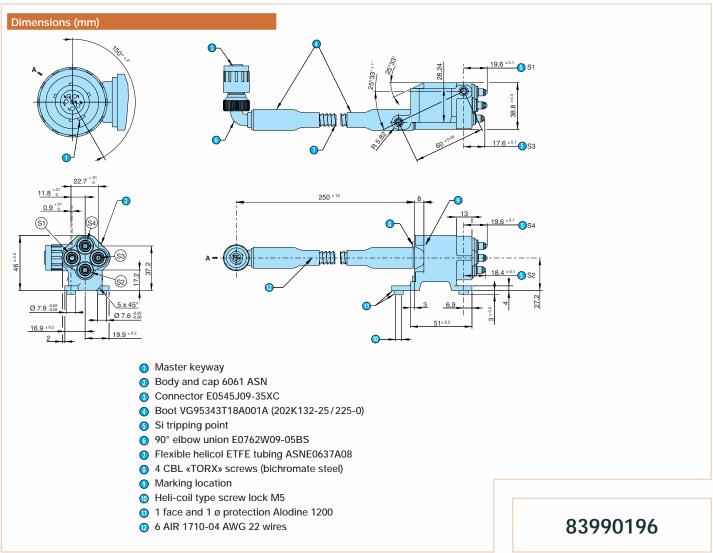
Open circuit voltage	9 to 17 VDC
opon on our contago	0.0.1.120
Closed circuit current	2 to 20 mA
Open circuit resistance	1 MΩ min
Closed circut resistance	10 Ω max
Bonding resistance: between connector and body contacts: gold, hermeticaly sealed	2.5 mΩ max
Insulation resistance: between the connector pins connected together and the case	>100 MΩ
Dielectric strength: between the connector pins connected together and the case	I < 1 mA 500 VRMS-60 Hz/1 min

Number of total cycles head on	80 000
Contact speed	20 in/s Max.
Release speed	20 in/s Max.
Pre-travel	0.040 in Max.
Differential travel	0.020 in Max.
Overtravel	0.125 in Min.
Operating force	6-12 lbs
Overtravel force	20 lbs Max.
Weight	0.38 pounds Max.

- Stainless steel plunger
- Nut Qty 2 MS21340-05 or equivalent
- Locking washer MS25081 C5 or equivalent
- Stainless steel body
- 6 Lug angular position: ±10°
- O Connector: EN2997-Y00803M6
- Master keyway angular position: ±15°
- Marking aera

Limit Switch for Helicopter Folding Tail functi


Specifications


Part numbers

Condition	Normes	Method	Procedure
Temperature	MIL STD810E	501-3 502-3	1 & 11
Sand and Dust	MIL STD810E	510-3	
Salt fog	MIL STD810E	509-3	1
Humidity	MIL STD810E	507-3	1
Altitude	MIL STD810E	500-3	1 & 11
Acceleration	MIL STD810E	513-4	3.5 G/3 axis
Shocks	MIL STD810E	516-4	1
Fluid susceptibility	RS S623 A5901 E01 ISSUE A	§3332	
Vibrations	MIL STD810E	514-4	
Rain	MIL STD810E	506-3	Ш
EMC	N/A		
Indirect lightning	N/A		
Induced signal susceptibility	N/A		
Solar radiation	MIL STD810E	505-3	1.8.11

Electrical characteristics		
Rated voltage	28 VDC	
Max. current (Resistive)	4 A	
Max. current (Inductive)	2 A	
Insulation resistance	≥ 100 MΩ	

Mechanical characterist	ics
Forces and travels for altitude and for operating temperature	from -150m to 4000m
Max. Operating force	25 N
Min. Release force	5 N
Max. Pre-travel	0.5 mm
Max. Differential travel	0.05 mm
Min. Overtravel	3 mm
Operating temperature	-55°C to +90°C
Weight	245 g max
Attack angles	25° max
MTBF	5000 Fh

| Detection and Sensing

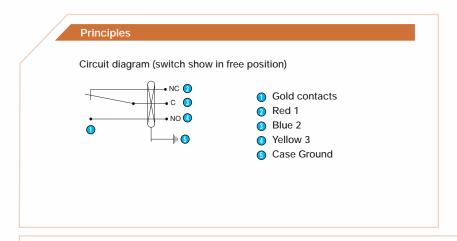
Limit Switch for thrust reverser door Upper S

Specifications

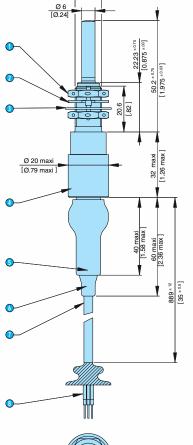
Part numbers

83770353

Condition	RTCA/ DO-160D	Requirements
Equipment intended for installation in powerplant	Section 4.3	Category D3
Operating low temperature	Section 4	Category D3 -40°C
Operating high temperature	Section 4	Category D3 +135°C
Short time operating high temperature	Section 4	Category D3 +135°C
Ground survival low temperature	Section 4	Category D3 -62°C
Ground survival high temperature	Section 4	Category D3 +85 °C
Altitude	Section 4	Category D3 45000 ft
Temperature variation	Section 5	Category A
Humidity	Section 6	Category B
Operating shock	Section 7	Category B
Crash shock	Section 7	Category B
Vibrations	Section 8	Category H2
Explosion	Section 9	Category E2
Waterproofness	Section 10	Category R
Fluid susceptibility	Section 11	Category F spray test
Sand and Dust	Section 12	Category D
Fungus resistance	Section 13	Category F
Salt spray	Section 14	Category S
Lightning induced transient susceptibility	Section 22	Category A4XX
lcing	Section 24	Category B

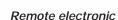

Electrical characteristics		
Normal operating voltage	28 VDC	
Maximum operating voltage	32 VDC	
Normal operating current	10 mA < I < 50 mA	
Maximum operating current	100 mA	
Resistance of contact	85 mΩ Max.	
Dielectric withstanding at atmospheric pressure	1 000 V rms 1 mA	
Electrical bonding	$2.5\ m\Omega$ between the bush and the beginning of the shield under the sleeve	
Insulation resistance	100 MΩ 500 VDC	
Electrical lifetime	100 000 cycles	
Contact bounce (checked during shocks and vibrations tests)	<5 ms	

Mechanical characteristics


The characteristics are given for standard temperature (23 °C) and atmospheric pressure at the sea level (760 mm hg). Braided shield grounded to body of switch for 360° .

Operating force	to be less than 12 lbs
Pre-travel	0.04 inch max
Differential travel	0.02 inch max
Overtravel	0.125 inch min
Mechanical lifetime	100 000 cycles
Weight	120 g Max.
Operating attack speeds	0.5 m/s Max.
Outstanded max. attack speeds permitted	0.7 m/s
Product sealing	Watertight
Cell sealing	Hermetic

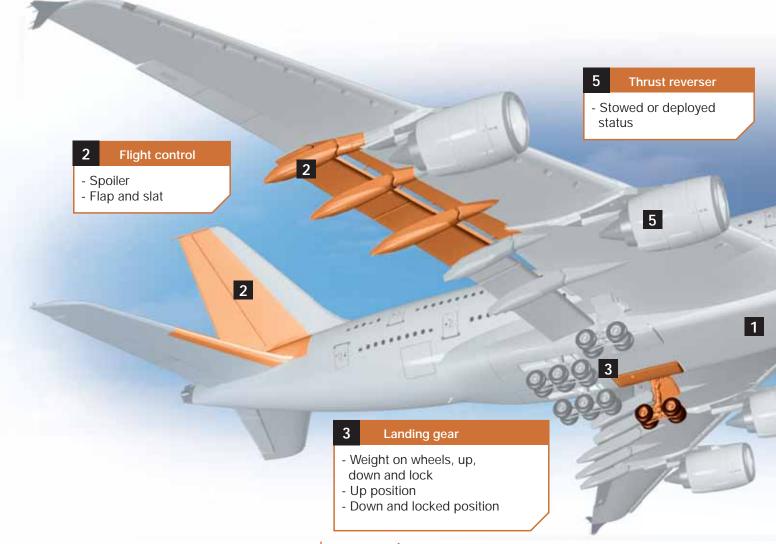
Dimensions (mm)


- ① Hex nut MS21340-04
- Keying washer MS25081-C4
- Flat washer MS9549-14
- Laser marking
- 6 Heat-shrinkable boots
- Sleeve DR25
- 1 cable per MIL27500-20RC3N06
- Sleeves marks
- Keyway to within .25 of shoulder .072^{±.004} wide X .031^{±.003} deep.

TRIM AFCS

Electronic Position detectors

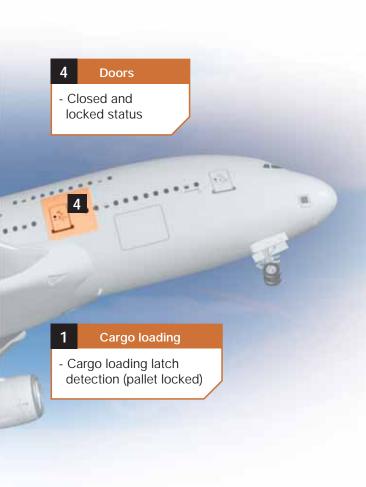
2 parts proximity sensor


Proximity sensor without electronic

IN ALL CASES, CROUZET AEROSPACE WILL FIND A WAY!

with Crouzet Aerospace's expertise in mechanical position detectors, Crouzet Aerospace offers a range of standards product, but has the ability and capacity to develop specific components, entirely adapted to the application into its environment.

Today, Crouzet Aerospace is a market leader in this technology.



PROXIMITY SWITCHES:

- Contactless detection with integrated electronics
- 2, 3 wires or connector output
- Full hermetic stainless steal housing
- Possibility of multiple output, BIT, high pressure, extended temperature range...

We create the product fully customisable dedicated to your need.

Detection principle for proximity switches and two parts sensors52
Proximity Sensor Rectangular passive sensor for doors function56
Proximity Sensor Round passive sensor for landing gear function58
Proximity Switch for thrust reverser actuator function60
Proximity Switch All Metal for thrust reverser actuator function62
Proximity Switch for landing gear function64
Proximity Switch All metal for landing gear function
Proximity Switch High pressure for wind turbine function68
Proximity Switch High pressure for landing gear function
Proximity Switch for cargo loading system function72/74
Proximity Switch for landing gear function
Proximity Switch for thrust reverser actuator function

Detection principle for proximity switches and two

A proximity switch is a device detecting, without any physical link, a metallic part that enters a predefined space in front of it. The sensing chain is composed of a sensing element, an electronic board and a moving part, called a target. The electronics applies a variable current in the sensing element, what creates a magnetic field around the sensing element. When the target enter the magnetic field, it changes the electromagnetic properties of the sensor which will lead to the change of one or several parameters of the current or the voltage of the coil (amplitude, frequency, phase lag, response time ...). Any variation over a threshold will set a binary signal which indicates that the target has entered a predefined space.

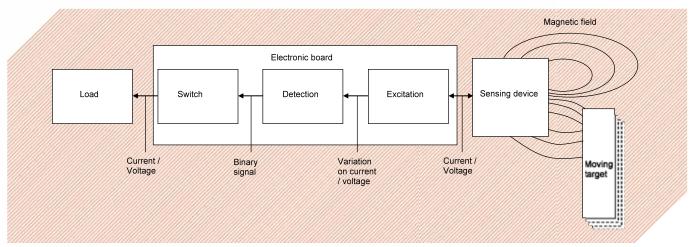
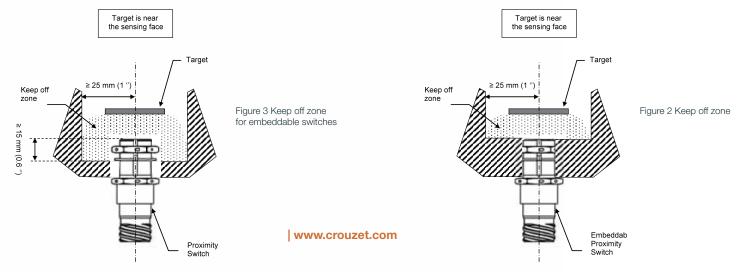


Figure 1 Measurement chain

PRODUCT INTEGRATION


The sensing device and electronic board can be integrated into one product called an active one-piece proximity switch. Such a product can be used in place of mechanical switches to detect parts that have short displacements or when there is little room to install a sensor. When the usage conditions are harsh and when a very high MTBF is critical, sensing device and electronic board should be

separated. The electronic board will be put in a protected area, typically inside a control box within the aircraft fuselage, and linked to the sensing device with two wires. In this case, the product is called two-piece proximity sensor.

KEEP OFF ZONE

Ferromagnetic and/or conductive metallic parts are forbidden between target and sensing face when target is near. More than 25 mm (1 ") of free space must also be left on proximity switch sides and more than 15 mm (0.60 ") behind the sensing face, for nominal detection characteristics.

When target is far away from the sensing face, there is a minimum space in front of the sensing face that has to be kept free from any metallic part to prevent from any change of the detection performance of the switch. The limit of this keep off zone in front of the sensing face is defined by a half-circle of minimum 25 mm (1 ") of radius.

DETECTION CURVES PRINCIPLE

Detection curves given on Crouzet Aerospace datasheets are generally plotted according to the X and Z coordinates, i.e. target slide-by movement is along X axis, and gap between sensing face and target is along Z axis, assuming that proximity switch and target centres are aligned according to X-Y axis. for X-Y-Z axis definition, see figure 3. Curves are valid for a specified target, i.e. target material and dimensions.

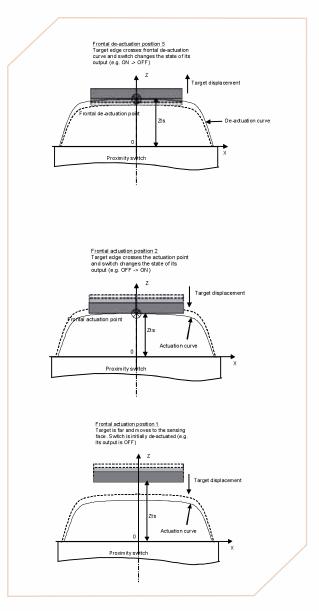


Figure 3 Target head-on actuation - deactuation point

The following sections describe the typical operating of a proximity switch according to simple target movement (slide-by and rotate-by movements), conditions on target positioning and definition, the definition of guaranteed detection curves and working zones, the constraints for target mounting, the electrical connections.

Target head-on approach

For the first "standard" movement, the head-on displacement, target and switch are centred. Target will move along the Z axis. Gap Zts is measured between sensing face of the switch and target side facing the switch.

Let target be FAR away from the sensing face and, in that case, switch de-actuated, e.g. its output being OFF if the switch is Normally Open (NO) and ON if the switch is Normally Closed (NC). When target approaches the sensing face, the switch output turns from OFF to ON (resp. ON to OFF if NC) when the gap is equal to the head-on actuation point. When target continues to approach the sensing face, the switch output remains ON (resp. OFF if NC).

Let target be NEAR to the sensing face and, in that case, switch actuated, e.g. its output state being ON (resp OFF if NC). When target moves away from the sensing face, the switch output turns from ON to OFF (resp OFF to ON if NC) when the gap is equal the head-on deactuation point. When target continues to move away from the sensing face, the switch output remains OFF (resp ON if NC).

There is a slight distance between actuation and deactuation points (for head-on or slide-by movement) which is called hysteresis. This characteristic is, generally, realised intentionally on the electronic board because it prevents random switching of the output of the sensor when target is on the detection curve and submitted to vibrations. This function can also be realised on the remote electronic board of a two piece sensor.

Hysteresis must not be confused with the grey zone. The grey zone is an area delimited by the guaranteed actuation and deactuation curves which take into account the tolerance ranges on the parts and the temperature drift of physical characteristics.

Detection principle for proximity switches and two



Figure 4 Slide by actuation - deactuation

Target slide-by movement

For the second "standard" movement, the slide-by displacement, target and switch Y axis are aligned, gap Z is predefined and target moves along X axis.

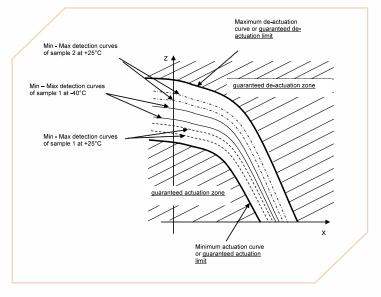
Let target be FAR away from the sensing face and, in that case, switch output state being OFF if switch is Normally Open (resp ON if NC). When target approaches the Z axis, the switch output turns from OFF to ON (resp ON to OFF if NC) when the lateral position is equal to the slide-by actuation point. When target continues to approach the Z axis, the switch output remains ON (resp OFF if NC).

In case of over travel (target centre crosses switch centre and continues to move), new Xts coordinate have to be considered. New Xts is measured between the centre of the switch and the other corner of the target.

Let target be NEAR to the Z axis and, in that case, switch output state being ON (resp OFF if NC). When target moves away from the Z axis, the switch output turns from ON to OFF (resp OFF to ON if NC) when the lateral position is equal the slide-by deactuation point. When target continues to move away from the Z axis, the switch output remains OFF (resp ON if NC).

Notice that, for a circular proximity switch and target, as long as switch front face and target face are parallel and their centres aligned, a target slide-by movement will always generate the same detection curves.

TARGET DEFINITION


In every case, target material and size are predefined on the datasheet.

The target is quite often a thin cylinder. Its diameter has to be sufficient so it will cover all the sensing face at a head-on position. Its thickness should be greater than 1 mm.

The material is generally a ferromagnetic metal. Typically it can be 17-4 PH or 15-5 PH stainless steel.

Other metals can be used, some of them as anti-target.

Target might also be rectangular, square, cylindrical, narrow or tall. It could rotate-by or have a complex movement. Shape and movement of the target will change detection curves. for any particular case, Crouzet Aerospace can calculate and provide the relative detection curves.

GUARANTEED DETECTION CURVES

A proximity switch is a Line Replaceable Unit. to be sure to have the same sensing performance when a switch is replaced by another, a statistic study is made to determine the guaranteed detection curves applicable to any product. Typical actuation and deactuation curves deviate according to parameters of influence such as the tolerance on parts of the product, the temperature drift of the detection characteristics, the performance of the manufacturing process. As shown on the following figure, the cumulating of uncertainties induces larger distances between guaranteed actuation and deactuation points than for the typical curves. However the detection curves of a switch will always be inside the guaranteed curves.

Figure 5 Definition of guaranteed detection curve and zones

ELECTRICAL OUTPUT CONNECTIONS FOR ONE PIECE SWITCH

Connection of Crouzet Aerospace one-piece proximity switches can be shielded and twisted 3 wires (supply, ground and output) or 2 wires ("hot" input, ground) cable.

For an efficient EMI protection, back-shell termination must be shielded over 360 °. Pigtail termination should be avoided. Also available are proximity switches which have two or three electrically isolated outputs.

Three wires connections

For the 3 wires configuration, the load can be connected between supply and output (sinking) or between output and ground (sourcing).

Figure 7 Load sinking (NPN)

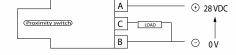
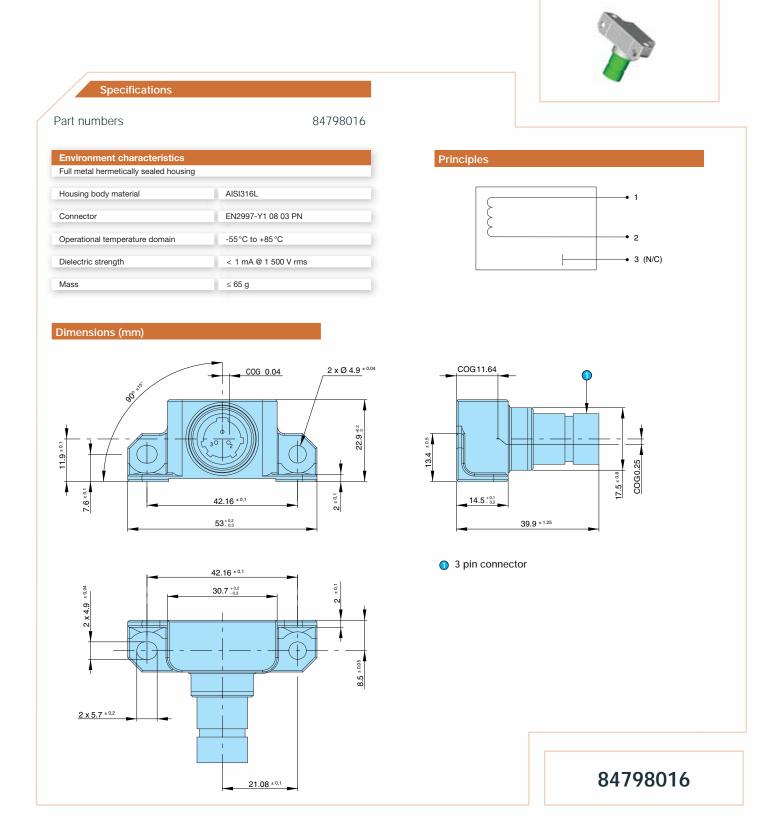


Figure 8 Load sourcing (PNP)

Two wires connection


For the 2 wires configuration, the "hot" input has two functions: first it provides the power supply to the PCB and second it controls the current through the load connected in series between the network and the "hot" input.

ELECTRICAL OUTPUT CONNECTIONS FOR A TWO PIECES SENSOR

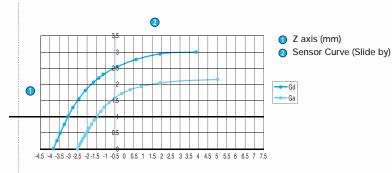
Connection between sensing device and electronic board has to be done with a twisted pair cable. for harsh EMI environment, the cable should be shielded.

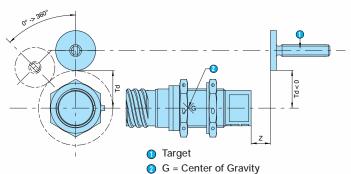
For an efficient EMI protection, back-shell termination must be shielded over 360 °. Pigtail termination should be avoided.

Proximity Sensor Rectangular passive sensor for

Proximity Sensor Round passive sensor for landin

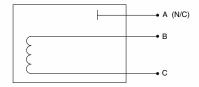
Specifications

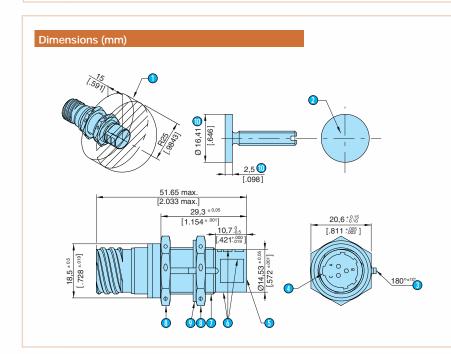

Part numbers 84798015


Operational explanations and conditions of use	C.CT.SAV.00056.GB	
Sperational explanations and conditions of use	0.01.0Av.00030.GB	
Environmental condition according to	DR72694	
Proximity sensor mass	≤ 50 g	
Housing body material	ASTM A838 alloy 2 ferritic stainless steel	
Housing front face material	AISI 316L	
Connector	D38999/25YA98PN matches with plug D38999/26KA98SN	
Operational temperature	-55 °C to +70 °C	
Survival temperature	-55 °C to +85 °C	
nductances defined @ 1 000 ±10 Hz 20 mA ±0.2 mA		
Inductance for target near	>24.53 mH @ Ga = 0.085 in (2.159 mm) at roon temperature (25°C)	
Inductance for target far	<23.64 mH @ Gd = 0.12 in (3.048 mm) at room temperature (25 °C)	
Inductance for target near	>24.23 mH @ Ga = 0.085 in, within operational temperature limit	
Inductance for target far	<23.84 mH @ Gd = 0.12 in, within operational temperature limit	
DC coil resistance at room temperature	70 Ω <r<90 td="" ω<=""></r<90>	
50 doil redistance at room temperature	ts 40 Ω <r<120 td="" ω<=""></r<120>	
DC coil resistance within operational temperature limits		
	C.CT.DCO.05761.GB	
OC coil resistance within operational temperature limits	C.CT.DCO.05761.GB >100 MΩ @ 500 VDC	

Principles

Actuation curves


Curves are guaranted when «keep off» requirement is met. Other cases with metal in vicinity are to be specifically studied and validated by Crouzet Aerospace.



Cables and wiring

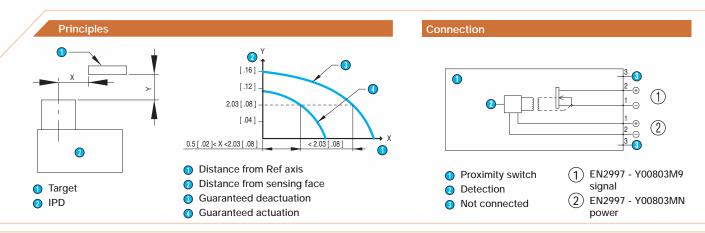
Shielded twisted pair AWG 22 Wiring external to fuselage must have 360° shield bond

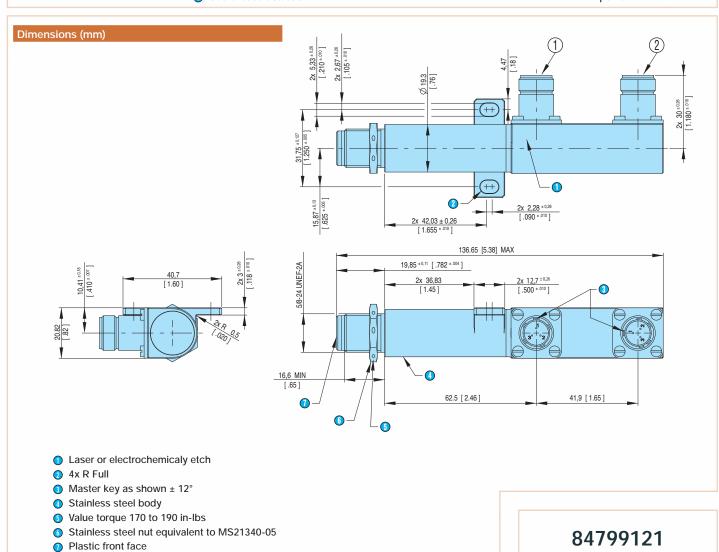
Td axis (mm)			
	Guaranted actuation gap (Ga)	Actuation curves	
Z mm	Td (mm)	Td (mm)	
0	-2.49	-3.81	
0.508	-2.06	-3.48	
1.016	-1.47	-3.02	
1.524	-0.48	-2.44	
1.651	-0.13		
1.778	0.33	-2.08	
1.905	0.91		
2.032	1.93	-1.65	
2.159	5.08	-1.37	
2.159	6.35		
2.286		-1.12	
2.54		-0.43	
2.794		0.64	
2.921		1.91	
3.048		3.81	
3.048		6.35	

- Room free of metal exclusivly target
- Laser marking
- Washer nose aligned with master keyway 180°±10°
- Master keyway
- Sensing surface
- Marking according to drawing: MA84798015
- ① Thread 0.625-24 UNEF-2A
- Nut MS21340-05 or Crouzet nut 79238608 tightening torque 70.8 Lb in/8 Nm Max.
- Washer key MS25081-C6 or Crouzet washer 70515367
- Dimension critical for actuation/deactuation curves

Proximity Switch for thrust reverser actuator func

Specifications


Part numbers

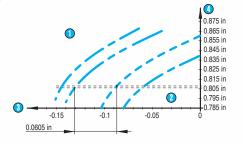

84799121

		RTCA/DO-160D	
Conditions		Section	Category
Temperature	-55°C to +125°C	4	F3
Temperature variation		5	А
Altitude	-2 000 to 41 000 feet	4	D3
Humidity		6	С
Waterproofness		10	R
Salt spray		14.0	S
Sand & Dust		12	D
Vibration		8	Curve W/3000 H:
Shocks		7	A Except with 3 shocks of 6 G ir each direction on each axis
Hermeticity	MILPRF8805E Watertight		
Supply voltage		16	Α
Voltage spike		17	Α
	Conducted susceptibility	18	А
EMI	Induced signal susceptibility	19	Z
	HIRF	20/20-5	Cat V
	Emission of radio frequency energy	21	н
Explosion proof		9.0	Environment 11
Fluids susceptibility	SKYDROL	11.0	F
Fungus		13.0	F
Magnetic effects			N/A
Lightning indirect effect	Pin injection	22	Power: L4 waveform 5A Signal: L3 waveform 4
Sustained acceleration		7	Procedure type R
Electrostatic discharge		25	н

Electrical charact	Normaly open
Function	When target is far, the output is not conductive
	When target is near, the output is conductive
	Operating: -55 °C, +125 °C
Temperature	Storage: -65°C, +125°C
	Torget: 10 05mm (0.75 IN) diameter 1.79mm
	Target: 19.05mm (0.75 IN) diameter 1.78mm (0.07 IN) thickness material 15-5 PH
	Slide by detection for a gap = 2.03 mm (0.08 IN)
Detection	Differential travel: 1.02 mm max (0.04 IN)
	Shift actuation and deactuation point (temperature
	and supply variations): 0.51 mm (0.02 IN)
Supply voltage	16 V Min., 32.5 V Max., 28 VDC
Cappiy voilage	per MIL-STD-704
Max. Consumption	10 mA Max. under 32.5 V
current	
Output voltage	8 VDC Min., 32.5 VDC Max.
Output leakage	1.5 V Max. under 25 mA
voltage (target near)	
Output leakage current (target far)	100 μA Max.
Outrout accomment	Resistive or Inductive
Output current max. 25 mA	Maximum switching frequency: 50 Hz
	Against inversion supply polarity and output
Protections	polarity with load
i iotections	Against permanent short circuit of the load
	•
	ISO 2678 Category C
	Dielectric strenght:
Dielectric test	750 VAC/50 Hz - 1 min - 1 000 μA
	Insulation resistance: 100 MΩ/45 VDC
	Bonding resistance between connector and
	housing: 2.5 mΩ max
Mtbf	100 000 flight hours
Endurance	80 000 cycles at max load (50 mA)

| www.crouzet.com

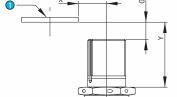
Proximity Switch All Metal for thrust reverser act

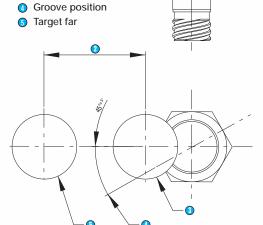

Specifications

Part numbers

Operating temperature	-65°F to +185°F (-55°C to +85°C)
Operating temperature	-03 1 10 +103 1 (-33 0 10 +03 0)
Storage temperature	-65 °F to +160 °F (-55 °C to +71 °C)
Short time operating temperature	+240°F (+116°C)/10 mn
Altitude	RTCA DO-160D Section 4.6.1 Category D
Humidity	RTCA DO-160D Section 6 Category C
	Section 2.1 per
Vibration	Figure 6-1 and Figure 7-17
Acceleration	Section 4.1 Zone 9 except with 8 G's Ir any axis
	arry axis
Explosive atmosphere	RTCA DO-160D Section 9 Category H
Waterproofness	RTCA DO-160D Section 10 Category S
Chaird as a contribution	Resistant to MIL-L-7808 & MIL-L-2369
Fluid susceptibility	Nesistant to Mile-E-7000 & Mile-E-2009
Sand & Dust	RTCA DO-160D Section 12 Category D
Sana a Bust	THE TEST TOOL COLLOT 12 Category E
Fungus	RTCA DO-160D Section 13 Category F
Salt spray	RTCA DO-160D Section 14 Category S
Odit Spray	THOA BO-100B Section 14 Sategory C
lcing	RTCA DO-160D Section 24 Category A
Material	Stainless stad including front food
iviateriai	Stainless steel including front face
Tightening torque	88 in.Lb (10 Nm) Max.
Matala	0 (05 -) Mari
Weight	3 oz (85 g) Max.
Mtbf	400 000 Fh

Supply	15 VDC +10%
Оцрріу	13 VDO ±1070
Maximum voltage	16.5 VDC
Magnetic effect	RTCA DO-160D
magnetic chock	Section 15 Category A
	RTCA DO-160D
Voltage spike	Section 17 Category A
Electromagnetic emmissions	Section 8 Category 4
Electromagnetic	
susceptibility	Section 7 Category 4
HIRF	RTCA DO-160D Category F
Lightning effects	Section 7.4 Level L2
Electrical continuity	2.5 mΩ Max. between case
,	and connector
Leakage current	50 μA Max. at 16.5 VDC
Switching response time	5 ms Max
(Ton & Toff)	o mo maxi
Switching frequency	100 Hz Max.
2	
Insulation resistance	100 MΩ/500 VDC
Dielectric strength	1 000 VAC/50 Hz/1 mA
	Polarity inversion and load
Protection against	short circuit

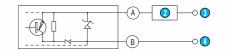

Principles


- Guaranteed deactuation aera
- Guaranteed actuation aera
- O Position X (inch)
- Openition Y (inch)

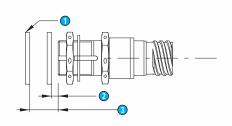
Max. deactuation & Min. actuation for a batch Typical deactuation for a product Typical actuation for a product

X 🔻 💍

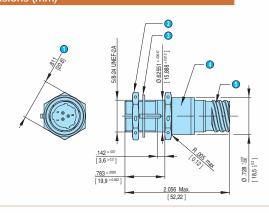
- Target
- Target displacement
- 3 Target near


Connection

TRIM AF



- Pin C not connected internally
- 2 Load
- Ositive node
- Negative node

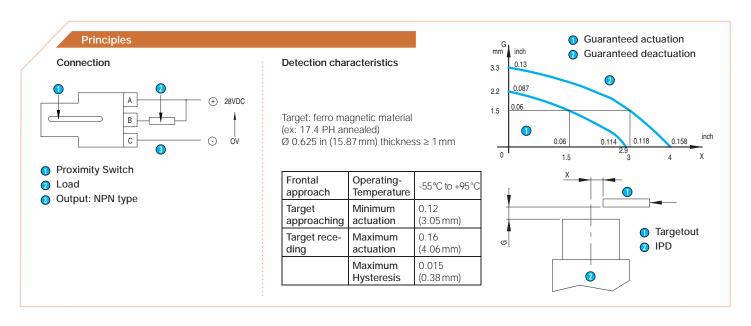

Wiring diagram

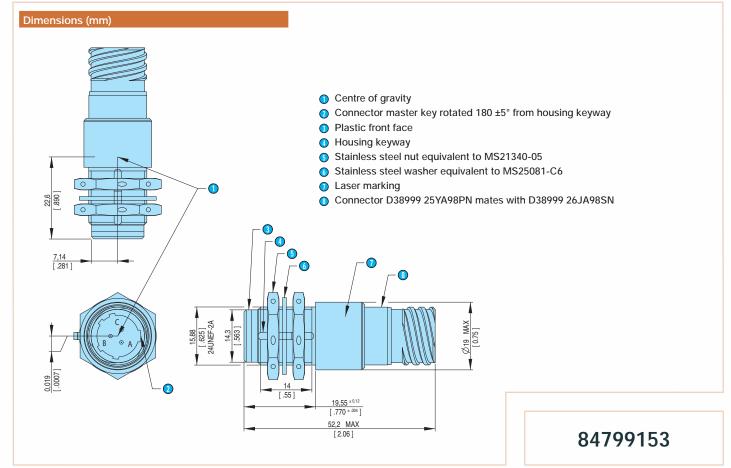
- Target (not delivered with proximity switch)
- Actuation
- Operation
 Operation

Dimensions (mm)

- On flats
- Stainless steel nut MS 21340-05 or equivalent
- 3 Stainless steel lock washer MS 25081-C6 or equivalent
- Electrochemically etch or laser marking
- 3 Connector D38999/25YA98PN to mate with D38999-26KA98SN

Proximity Switch for landing gear function

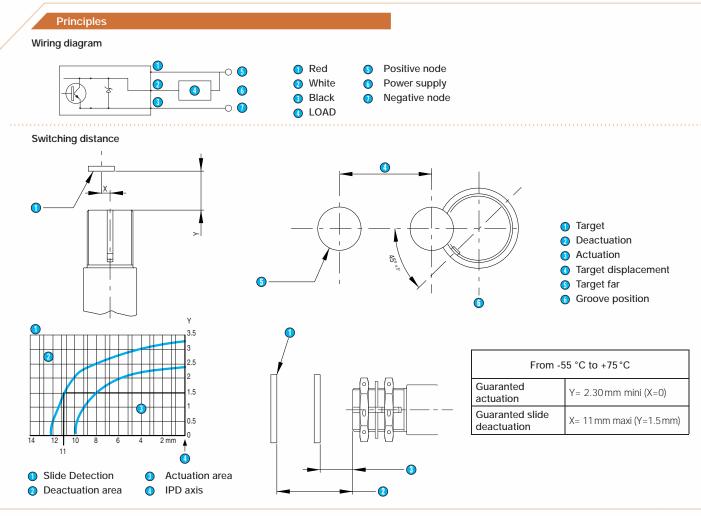

Specifications

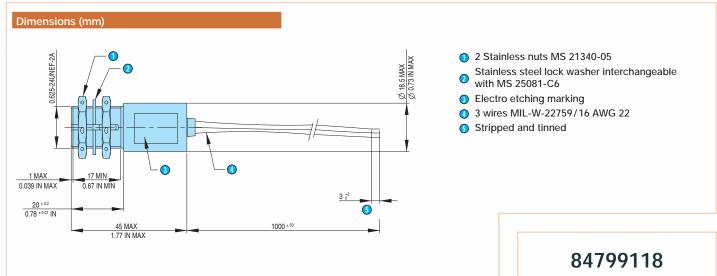

Part numbers

Condition	RTCA/DO-160E	
Condition	Section	Category
Temperature & altitude	4	D2 & 4.6.1
Temperature variation	5	A
Humidity	6	С
Waterproofness	10	S
cing	24	В
Salt spray	14	T & 14.3.6.7
Sand & Dust	12	S 12.4 & 12.5
Vibration	8	R & H Curves E, E1 & P
Shocks	7	7.2
Fungus	13	F
Fluids susceptibility	11	F
Power input supply DC	16	В
Voltage spikes	17	Α
Magnetic effects	15	Α
Radio frequency susceptibility	20	A & F
Lightning induced transient susceptibility	22	A4G44
Conduced susceptibility audio frequency	18	Z
nduced signal susceptibility	19	ZC
Emission of radio frequency energy	21	Н
Electrostatic discharge	25	А
Crash safety shock	7	7.3.1 & 7.3.3

Electrical characteristics	;
Temperature operating	-55°C to +95°C
Temperature survival	-61°C to +95°C
Supply Min.	16 V
Supply Max.	32.5 V
Current consumption	10 mA Max. under 32.5 V
Leak voltage	1 VDC under 250 mA
Leakage current	50 mA Max.
Max. Load	250 mA Resistive, 125 mA Inductive, 40 mA Lamp
Electrical continuity	< 2.5 mΩ
Dielectric strenght	1 000 VDC/1 mA
Insulation resistance	100 MΩ/45 VDC
Dustastians	Against inversion of polarity
Protections	Against permanent short circu of the load
Switching frequency	50 Hz Max.
Power on reset time	Tp ≤ 15 ms
Weight	45 g Max. without nuts & washer
Tightening torque	20 Nm Max. (176 in.Lb)
Connector to wrenching flats torsional load	5 Nm Max. (44 in.Lb)

Proximity Switch All metal for landing gear functi




Specifications

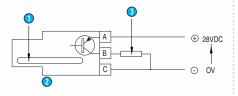
Part numbers

Operating temperature	-55 °C to +75 °C
Survival temperature	-55 °C to +85 °C
Altitude	RTCA DO 160D Section 4 Category F2 (Max. Operating altitude 51 000 ft)
Overpressure	RTCA DO 160D Section 4 (absolute pressure 180 Kpa)
Temperature variation	RTCA DO 160D Section 5 Category B
Shocks & Crash safety	RTCA DO 160D Section 7 § 7.2 & § 7.3
Humidity	RTCA DO 160D Section 6 Category B
Sand and Dust	RTCA DO 160D Section 12 Category [
Fungus	RTCA DO 160D Section 13 Category F
Salt spray	RTCA DO 160D Section 14 Category S
Waterproofness	RTCA DO 160D Section 10 Category V
Vibrations	RTCA DO 160D Section 8 Category S (Curve E)
Material	Stainless steel including front face
Weight	70 g Max. (2.5 Oz)
MTBF	400 000 H

Supply	+28 VDC
Minimum voltage	17 VDC
Maximum voltage	32.5 VDC
Power input test	RTCA DO 160D Section 16 Category Z
Magnetic effect	RTCA DO 160D Section 15 Category A
Voltage spike	RTCA DO 160C Section 17 Category A
Audio frequency conducted susceptibility	RTCA DO 160D Section 18 Category Z
Audio frequency conducted audio frequency conducted	RTCA DO 160D Section 19 Category A
Radio frequency susceptibility (conducted & radiated)	RTCA DO 160D Section. 20 Category R
Emission of radio frequency energy	RTCA DO 160D Section. 2 ⁻¹ Category M
Induced lightning strike protection	RTCA DO 160D Section. 22 Level 2
Current consumption	10 mA Maximum under 32.5 VDC
Leak voltage	1.5 VDC Maximum under 100 mA
Load current	100 mA Maximum
Switching response time (Ton and Toff)	2 ms Maximum
Switching frequency	100 Hz Maximum
Insulation resistance	100 MΩ /50 VDC
Dielectric strength	500 VDC/1 mn/ 1 mA
Protection against	Polarity inversion and load short circuit

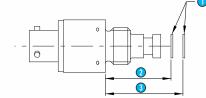
Proximity Switch High pressure for wind turbine f

Specifications


Part numbers

0 1111	A BD 0007		RTCA/DO-160C	
Condition	Section	Category	Section	Category
Temperature	3.2	A2	4	A2
Altitude	3.3	43.100 ft -1 000 ft	4	D2
Humidity	3.4	В	6	В
Waterproofness	3.5	R	10	R
lcing	3.6			
Salt spray	3.7	S	14.3.6.6	S
Sand and Dust	3.8	D	12.3	D
Vibration	3.9	3J/C	8	J/C
Shock	3.11.1		7.1/7.2	
Accelerations	3.12	Flight max. Values		
Moisture	3.13	Х	13	Х
Pollution	3.14	X	11	X A/H
Dielectric strenght	2-3.7			
Power input supply DC	2-3.5		16	
EMI			19	Α
Fluids susceptibility	2.3.11.3 to 2.3.11.10			

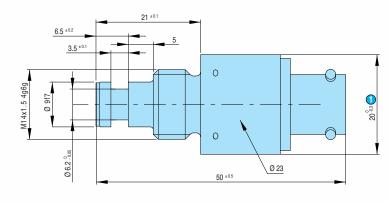
Electrical characteristics	;
Temperature Operating	-55°C to +90°C
Supply Min.	14 V
Supply Max.	32.5 V
Maximum voltage drop	2 V under 150 mA 3 V under 500 mA
Maximun current	500 mA Resistive or Inductive
	50 mA Lamp nominal current
Electrical continuity	Between case and connector $< 8 \text{ m}\Omega$
Dielectric test	Dielectric strenght 500 VDC
Dielectric test	Insulation resistance: 400 M Ω /50 Volts
Current consumption	10 mA Max. under 32.5 V
	Against inversion of polarity
Protections	Against permanent short circuit of the load
Hermeticity	NFC 20631 Test QC Method 2
Pressure on the detection face	Normal working pressure: 206 +3 Bar
Hydraulic fluid NSA 307 110	Test pressure: 313 Bar

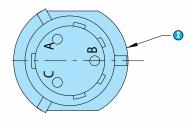


Function: normally open

- Proximity Switch
- Output: PNP Type
- 3 Load

Frontal approach




- Target
- 2 Actuation
- 3 Deactuation

Target: 9 mm square ; 1 mm thickness Mat 1. 4104 (AFNOR Z10CF17) For other target material / dimension, Ga/Gd may vary.

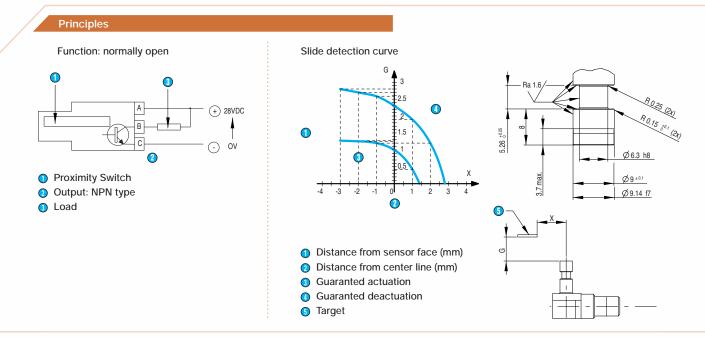
Temperature	-55°C to +90°C	20°C
Actuation distance	≥ 21.7 mm	≥ 21.87 mm
Deactuation distance	≤ 22.55 mm	≤ 22.3 mm

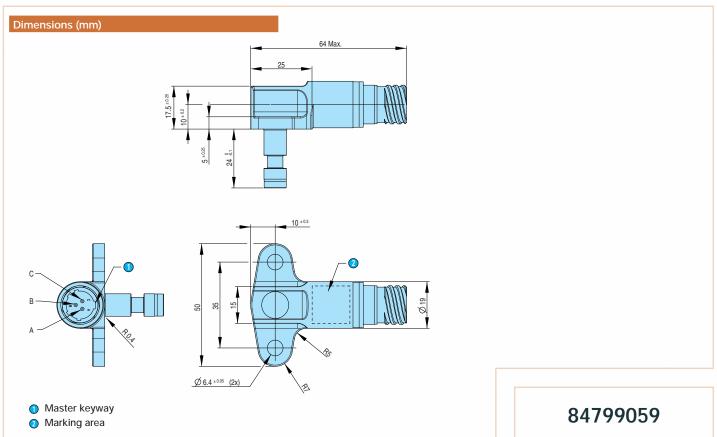
Dimensions (mm)

- 1 Flats
- Connector type ASN-E0053N8B3PN

Proximity Switch High pressure for landing gear f

84799059



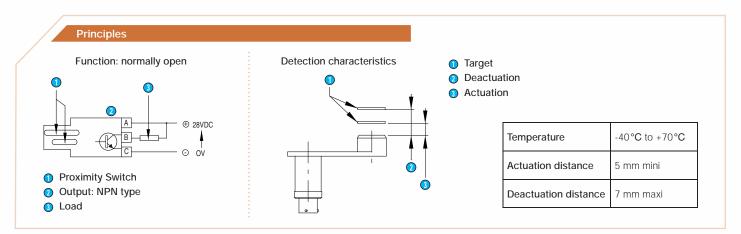

Specifications

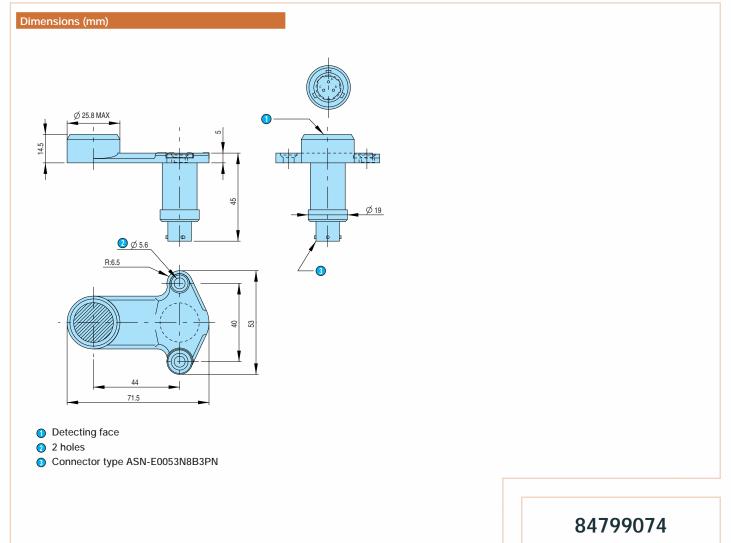
Part numbers

	Norme MIL STD	Section Method	Procedure
Temperature	810E	501-3&502-3	1 and 2
Altitude-Pressure	810E	500-3	1 and 2
Solar radiation	810E	505-3	1 and 2
Rain	810E	506-3	1 and 3
Ice and Icing rain	810E	521-1	1
Sand and Dust	810E	510-3	1 and 2
Direct effects of lightning	1757A	ZONE 1B	Stationary impact
Vibrations	810E	514-4	1-4-2-2
Accelerations	810E	516-4	4
Load factors	810E	513-4	2
Shocks	810E	516-4	1
Crashes	810E	516-4	5
Fungus	810E	508-4	Cat.1
Conduced susceptibility	MIL STD 461-462	CS01/02/06/07	
Radiated susceptibility	MIL STD 461-462	RS01/02/03	
Conducted emissions	MIL STD 461-462	CE01/02/03/04	
Emitted spikes on power lines	Pr EN2282		
Dadieted emission	RTCA D0 160C	15	Cat.Z
Radiated emission	MIL STD 461C	RE01-RE02	
HIRF Radiated susceptibility	MIL STD 462	RS03	
HIRF Conducted susceptibility	RTCA DO 160C	Section 20	Cat.Y
Electrostatic protection	RTCA DO 160D	25	A
Humidity test	810E	507-3	1
Salt atmosphere	810E	509-3	1

Operating temperature	-54°C to +120°C
operating temperature	0.0.0.1.20.0
	-54°C to +135°C
Operating oil temperature	during 4 hours Max.
	during 4 nours wax.
Supply	14 V Min., 38 V Max.
Зирріу	14 V IVIII., 36 V IVIAX.
Leak voltage	2 V under 100 mA
Louit Foliago	E V under 100 mm
Current Max. 100 mA	Resistive or Inductive
	Between case and connector
Electrical continuity	< 2.5 mΩ
	Dielectric strenght 500 VDC - 1 mA
Dielectric test	
	Insulation resistance: 100 MΩ/500 V
	15 mA Max. under 14 V
Current consumption	15 mA Max. under 32.5 V
	15 mA Max. under 38 V
	Against inversion of polarity
Protections	
	Against permanent short circuit
	of the load
	Liver die finie MILLEGOGE
	Hydraulic fluid MIL H 5606F and MILH 83282C
Pressure on the	and MILITODEDEO
detection face	Burst pressure: 518 Bar
40100110111400	Ed. St. prodouto. O to Edi
	Proof pressure: 310 Bar
Connector	Type D38999 25Y A98PN
Box material	Stainless steel

Proximity Switch for cargo loading system functi




Specifications

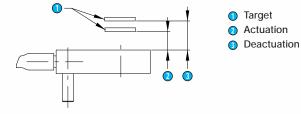
Part numbers

Condition	ABD 100		RTCA/DO-160D		
Condition	Section	Category	Section	Categor	
Temperature	1.2.1.1	A2	4	A2	
Altitude	1.2.1.2	43 100 ft -1 000 ft	4	A2	
Humidity	1.2.1.4	А	6	Α	
Waterproofness	1.8		10	R	
lcing	1.2.1.15		24	Α	
Salt spray	1.2.1.12		14	S	
Sand and Dust	1.2.1.10		12	D	
Vibration	1.2.1.6		8	S	
Shocks	1.2.1.5	operational shocks	7	A 6 G/11 ms	
Accelerations	1.2.1.20	Flight max. values			
Fungus	1.2.1.11		13	F	
Fire class	1.2.1.17	N/A			
Fluids susceptibility	1.2.1.9		11	F	
Power input supply DC	1.9		16.5	Α	
Voltage spikes	1.6		17	Α	
Magnetic effects	1.2.1.14		15	А	
Radio frequency susceptibility	1.2.3.3		20	U	
Lightning induced transient susceptibility	1.2		22	С	
Conducted susceptibility audio frequency	1.2.3.4.2		18	А	
Induced signal susceptibility	1.2.3.4.3		19	Z	
Emission of radio frequency energie	1.2.3.4.4		21	L	

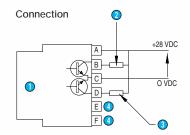
Electrical characteristics	5
Temperature	Operating: -40 °C to +70 °C
	Survival: -55°C to +85°C
Supply	Min.: 17 V, Max.: 32.5 V
Leak voltage (target near)	0.25 V under 250 mA
Current Max. 250 mA	Resistive or Inductive
Electrical continuity	Between case and connector $< 20 \text{ m}\Omega$
	Leakage current (target far) ≤ 500 µA under 28 V
Current consumption	8 mA Max. under 28 V
	Switching frequency ≤ 100 Hz
	Insulation resistance ≥ 100 MΩ at 45 VDC
	Dielectric strenght >500 VDC
	Momentary power interruption: <1 ms
	Power on reset: ≤ 5 ms
Protections	Against inversion of polarity
	Against permanent short circuit of the load
Vibration test	IPD is fixed by 2 screws

Proximity Switch for cargo loading system functi

Specifications


Part numbers

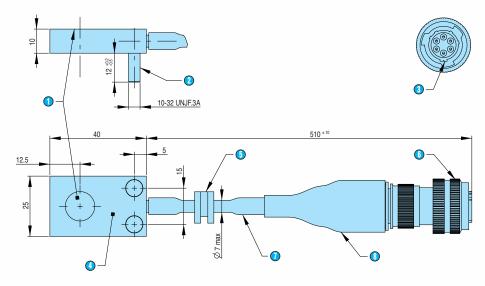
Condition	ABD 100		RTCA/DO-160D	
Condition	Section	Category	Section	Category
Temperature	1.2.1.1	A2	4	A2
Altitude	1.2.1.2	-1 000 ft +43 100 ft	4	A2
Humidity	1.2.1.4	А	6	А
Waterproofness	1.8		10	R
lcing	1.2.1.15		24	Α
Salt spray	1.2.1.12		14	S
Sand and Dust	1.2.1.10		12	D
Vibration	1.2.1.6		8	S
Shocks	1.2.1.5	Operational shocks	7	A 6 G/11 ms
Accelerations	1.2.1.20	Flight max. values		
Fungus	1.2.1.11		13	F
Fire class	1.2.1.17	N/A		
Fluids susceptibility	1.2.1.9		11	F
Power input supply DC	1.9		16.5	Α
Voltage spikes	1.6		17	А
Magnetic effects	1.2.1.14		15	Α
Radio frequency susceptibility	1.2.3.3		20	U
Lightning induced transient susceptibility	1.2		22	С
Conducted susceptibility audio frequency	1.2.3.4.2		18	А
Induced signal susceptibility	1.2.3.4.3		19	z
Emission of radio frequency energie	1.2.3.4.4		21	L


Electrical characteristics	
Temperature	Operating: -40 °C to +70 °C
iompoiataio	Survival: -55 °C to +85 °C
Supply	Min.: 17 V, Max.: 32.5 V
Leak voltage (target near)	1 VDC Max. under 25 mA
Output max current	25 mA resistive or inductive load
Maximum Capacitor load	22 nF
Electrical continuity	Between case and connecte 20 m Ω Max.
Leakage current	500 μA Max. under 28 VDC
Current consumption	10 mA Max. under 32.5 VD
Switching frequency	100 Hz Max.
Insulation resistance	100 MΩ Min. at 45 VDC
Dielectric strenght	>500 VDC
Momentary power interruption	1 ms Max.
Power and reset	5 ms Max.
	Against inversion of polarity
Protections	Against permanent short circuit of the load
Weight	100 g Max.
Material case	Aluminium protected

Detection characteristics

Temperature	-40°C to +70°C
Actuation distance	4 mm Min.
Deactuation distance	6 mm Max.

Proximity Switch


2 Load 1

3 Load 2

Situation	Output 1 Pin B	Output 2 Pin D
Target detected	High	Low
Target not detected	Low	High
Incorrect	Low	Low
Incorrect	High	High

Proximity switch must be connected with AWG24 minimum shielded twisted wires (EMI).

Dimensions (mm)

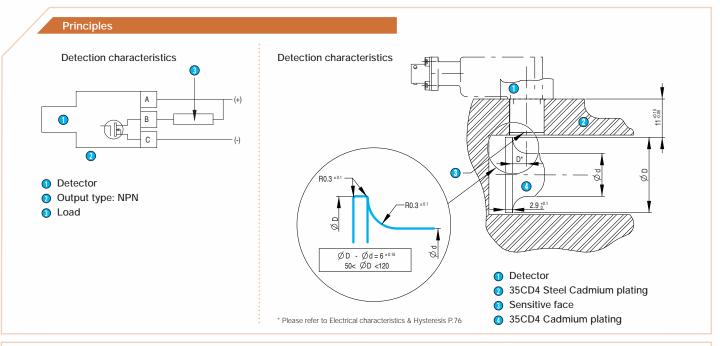
- Sensing face
- Nickel plated steel
- Master key
- Marking
- 6 Moveable grommet
- O Plug ASN-E0052010B6PN
- Shielded cable
- Opening the state of the sta

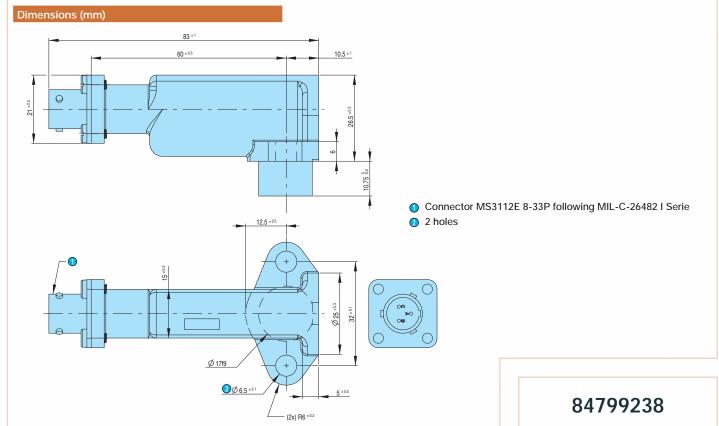
Housing

Proximity Switch for landing gear function

Part numbers 84799238 Mechanical characteristics Weight 145 ±10 g

Front face: peek (Arlon 1000)


Electrical characteristics


for D≤ 1.6 mm:
the detector will always
be in detection mode

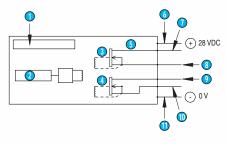
Hysteresis
≤ 1.5 mm

for D≥ 3.1 mm:
the detector will always
be in non detection mode

Proximity Switch for thrust reverser actuator func

Specifications

Part numbers

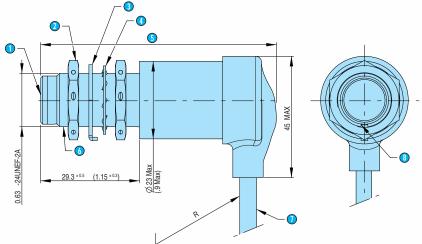

Condition		RTCA/DO-	-160D
		Section	Category
Temperature		4	F3
Temperature varia	tion	5	А
Altitude		4	F3
Humidity		6	В
Waterproofness		10	R
Salt spray		14.0	S
Sand and Dust			N/A
Vibration		8	H2 Curve D and
Operation shock and Crash safety		7.2/7.3	В
Hermeticity	MILPRF8805E watertight		
Supply voltage		16	А
Voltage spike		17	Α
ЕМІ	Conducted susceptibility	18	Z
	Induced signal susceptibility	19	z
	Radio frequency susceptibility	20	Conducted W
	Emission of radio frequency energy	21	н
Explosion proof		9.0	E1
Fluid susceptibility	/	11.0	F
Fungus		13.0	F
Magnetic effects			N/A
Lighting indirect e	ffect	22	Waveform Set A Level 4
lcing		24	С
Lighting direct effe	ect		N/A
Electrostatic disch		25	15 kV

Electrical characteristics	
Temperature	Operating storage and survival: -55°C to +121°C
Supply voltage	16 V Min., 32.5 V Max.
Max. Consumption current	15 mA Max. under 32.5 V
Output voltage	8 VDC Min., 32.5 VDC Max.
Output leakage voltage (On)	1 V Max. under 50 mA
Output leakage current (Off)	100 μA Max.
Output current Max. 100 mA	Resistive or Inductive
Maximum switching frequency	50 Hz
Protections	Against inversion supply polarity and output polarity with load
Trocodorio	Against permanent short circuit of the load
Shock resistance	100 G/11 ms
Dielectric test	Dielectric strenght: 1 000 VAC - 1 Min 500 μA
ISO 2678 Categorie C	Insulation resistance: 100 MΩ/500 VDC
MTBF	= 115 000 flight hours

Principles

Function: normally open

- when target is far , the output is not conductive
- when target is near , the output is conductive


- Proximity switch
- O Detection
- **3** Out 1
- **(1)** Out 2
- White

Dimensions (mm)

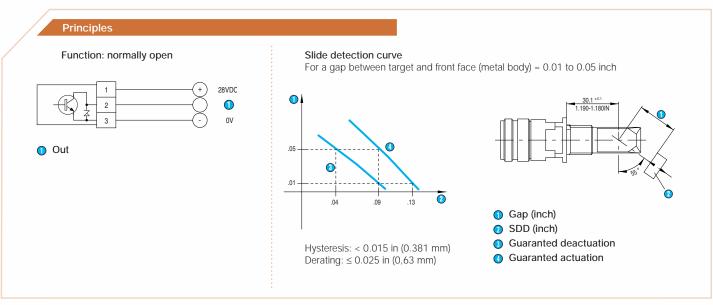
- Orange 6 Green
- **9** Red
- 0 Black
- Blue
- MOS N

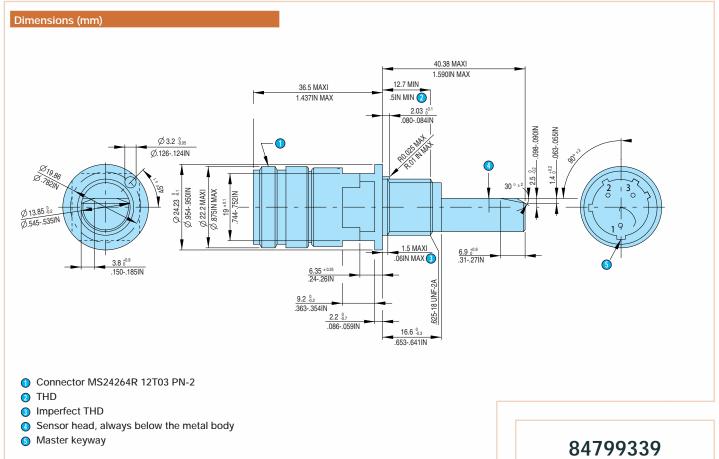
Detection characteristics

- From -55 °C to +121 °C (-65 °F to +250 °F)
- Frontal approach
- Target: 15.87 mm (0.625 in) square; 1 mm (0.04 in) thickness material 15-5 PH
- Actuation distance 0.1 < Ad < 0.14 in or 2.5 < Ad < 3.55 mm
 Deactuation distance 0.145 < Dad < 0.18 in or 3.68 < Dad < 4.57 mm

- Sensing face material flush and plastic
- Nut MS21340-05
- 3 Lock washer MS25081-C5
- Lock washer MS35333-138
- § 80 Max. in the Proximity Switch axis
- 6 Keyway
- Shielded cable
- 6 Keyway

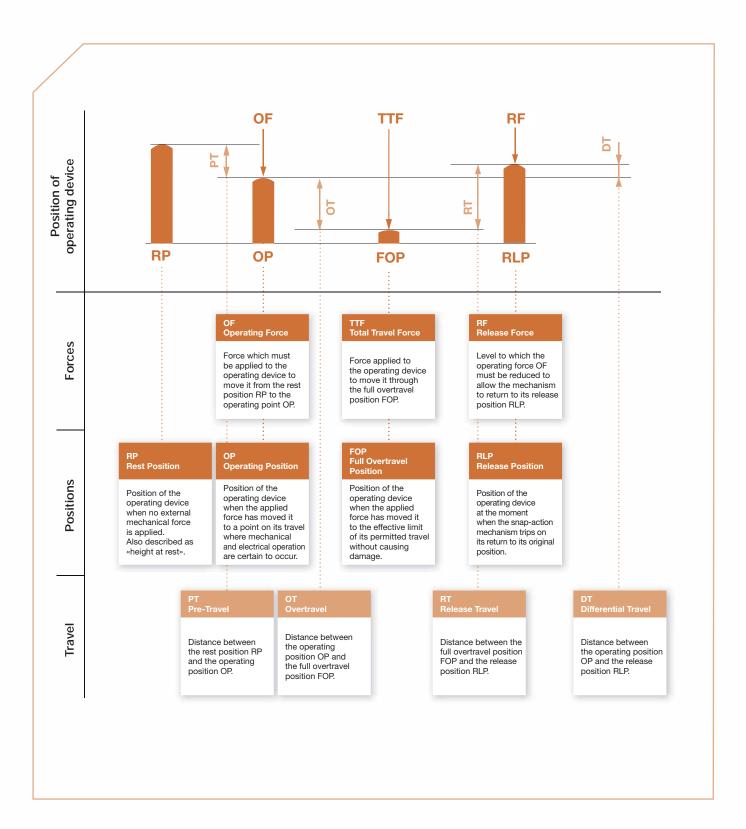
Proximity Switch for thrust reverser actuator func




Specifications

Part numbers

Temperature	RTCA DO 160C
Operating temperature	-65 °F to +250 °F
Survival temperature	-80 °F to +250 °F
Materials	AISI 303 (Z10 CNF 18 09)
Humidity and Ice	MIL std 810E Method 507-2 procedure II
Salt spray	MIL std 810E Method 509-2
Fungus	MIL Std 810E Method 508-3
Sand and Dust	MIL Std 810E Method 510-2 Procedure I
	0.036 in D.A. 10-52 Hz
Structural vibration	10 G Constant 52-1 400 Hz
	20 G Constant 1 400-2 000 Hz
Shocks	MIL Std 810E Method 516-4 Procedure I 20 G/10 ms
Weight	0.19 Lb Max. (85 g Max. without nut)
Tightening torque	22.7 Nm Max. (200 inch/Pd)
Connector to wrenching flats torsional load	13 Nm Max. (115 inch/Pd)


Electrical characteristics	
Supply	MIL Std 704D
Minimum voltage	16 V DC
Maximum voltage	32.5 V DC
Voltage transients	MIL Std 704D
Anti interference	MIL Std 704D
Max. Short circuit resistance (Output On)	40 Ω under 10 mA
Switching current	20 mA Max.
Open circuit voltage	6 V Max.
Open circuit leakage current	< 25 μA under 5 V DC
Electrical continuity	$<$ 10 $m\Omega$ between case and connector
Consumption	< 10 mA without load under 32 V
Consumption	< 5 mA without load under 16 V
Switching frequency	≤ 250 Hz
Insulation resistance	\geq 40 $M\Omega$ at 500 V DC
Insulation voltage	>1 500 V AC/1 min.
Lightning protection	PS 966903 Fig. 4-3-12 V Peak 600 V/6 Ω
Protections	Overload and load short circuit

Terminology

FORCES - POSITIONS - TRAVEL

Notes	

Custom Sensors & Technologies (CST) is a specialist in sensing, control and motion products.

Through its brands, BEI Kimco, BEI Sensors, BEI PSSC, Crouzet, Crydom, Kavlico, Newall and Systron Donner Inertial, CST offers customizable, reliable and efficient components for mission-critical systems in Aerospace & Defence, Transportation, Energy & Infrastructure, Medical, Food and Beverage and Building Equipment markets.

Focused on premium value offers and committed to excellence, CST, with 4400 employees worldwide and sales of \$604M US in 2012, is the dependable and adaptable partner for the most demanding customers.

Warning:
The product information contained in this catalogue is given purely as information and does not constitute a representation, warrantly or any form of contractual commitment. CROUZET Automatismes and its subsidiaries reserve the right to modify their products without notice. It is imperative that we should be consulted over any particular use or application of our products and it is the responsability of the buyer to establish, particularly through all the appropriate tests, that the product is suitable for the use or application. Under no circumstances will our warranty apply, nor shall we be held responsible for any application (such as any modification, addition, deletion, use in continuction with other electrical or electronic components, circuits or assembles, or any other

in conjunction with other electrical or electronic components, circuits or assemblies, or any other unsuitable material or substance) which has not been expressly agreed by us prior to the sale of our products.

www.cstsensors.com

EUROPE & AMERICA

FRANCE

Crouzet Automatismes SAS

2 rue du Docteur Abel - CS 60059 26902 Valence CEDEX 9 FRANCE

Tel.: +33 (0) 4 75 44 88 44 Fax: +33 (0) 4 75 55 98 03 E-mail: com-fr@crouzet.com

Customer service

Tel.: +33 (0) 4 75 80 21 01 Fax: +33 (0) 4 75 82 89 00

AUSTRIA

SWITZERLAND

Crouzet GmbH

Otto-Hahn-Str. 3, 40721 Hilden Postfach 203, 40702 Hilden DEUTSCHLAND

Tel.: +49 (0) 21 03 9 80-123 Fax: +49 (0) 21 03 9 80-222 E-mail: info-direkt@crouzet.com

ITALY

Crouzet Componenti s.r.l.

Via Viganò De Vizzi, 93/95 20092 Cinisello Balsamo (Mi) ITALIA

Tel.: +39 (02) 66 599 211 Fax: +39 (02) 66 599 218 F-mail: com-it@crouzet.com www.crouzet.com

UNITED KINGDOM

THE NETHERLANDS

BELGIUM

Crouzet Ltd

8 Cedarwood Chineham Business Park Crockford Lane Basingstoke, Hampshire RG24 8WD

RG24 8WD UNITED KINGDOM Tel.: +44 (0)1256 318 900 Fax: +44 (0)1256 318 901 E-mail: info@crouzet.co.uk www.crouzet.com

OTHER

COUNTRIES

USA

USA

Custom Sensors &

14401 Princeton Avenue Moorpark, CA 93021

Chineham Business Park www.crouzet.com

Tel.: +1 (805) 552 3599 Fax: +1 (805) 552 3577 E-mail: info@cstsensors.com

Technologies

OTHER COUNTRIES

Crouzet Automatismes SAS 2 rue du Docteur Abel - CS 60059 26902 Valence CEDEX 9

FRANCE

Tel.: +33 (0) 4 75 44 88 44 Fax: +33 (0) 4 75 55 98 03 E-mail: com-fr@crouzet.com www.crouzet.com

Distributed by:

Crouzet Automatismes SAS

2 rue du Docteur Abel - CS 60059 26902 Valence CEDEX 9 **FRANCE**

www.crouzet.com

Creation-Design: Communication Crouzet Editing-Publishing: Link to Business, Axess Photos-Graphics: Ginko, Daniel Lattard Impression: Impressions Modernes

