

MiniSKiiP[®] 3

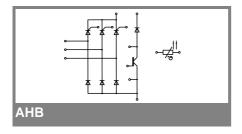
3-phase bridge rectifier + brake chopper

SKiiP 39AHB16V1

Features

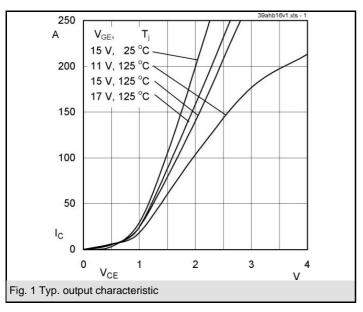
- Fast Trench IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

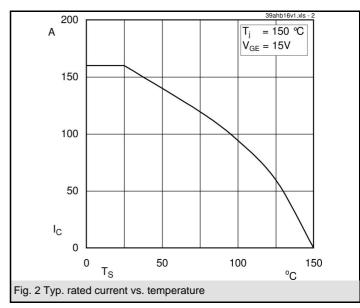
Typical Applications*

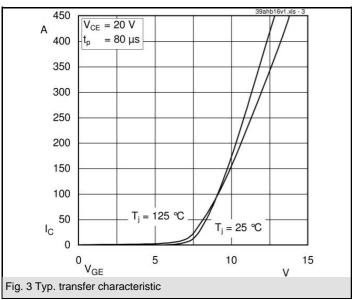

Input bridge for inverter uo to 45 kVA

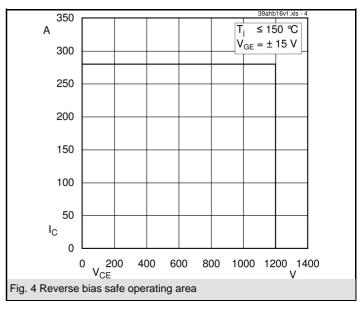
Remarks

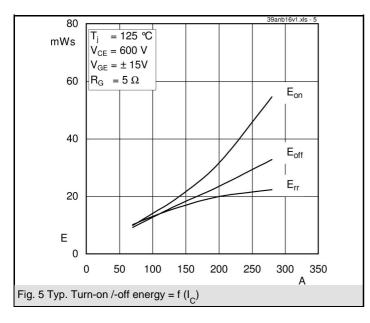
• V_{CEsat} , V_F = chip level value

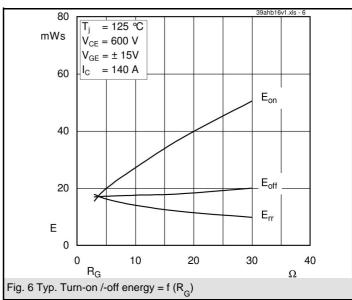

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specified								
Symbol	Conditions	Values	Units					
IGBT - Chopper								
V_{CES}		1200	V					
I _C	$T_s = 25 (70) ^{\circ}C$	157 (118)	Α					
I _{CRM}	$t_p \le 1 \text{ ms}$	280	Α					
V_{GES}		± 20	V					
T _j		- 40 + 150	°C					
Diode - Chopper								
I _F	$T_s = 25 (70) ^{\circ}C$	167 (124)	Α					
I _{FRM}	$t_p \le 1 \text{ ms}$	280	Α					
T _j		- 40 + 150	°C					
Diode / Thyristor - Rectifier								
V_{RRM}	ĺ	1600	V					
I _F / I _T	$T_{s} = 70$	121	Α					
I _{FSM} / I _{TSM}	t _p = 10 ms, sin 180 °, T _i = 25 °C	1250	Α					
i²t	t _p = 10 ms, sin 180 °, T _i = 25 °C	7800	A²s					
T _j	Diode	- 40 + 150	°C					
T _j	Thyristor	- 40 + 125	°C					
I _{tRMS}	per power terminal (20 A / spring)	160	Α					
T _{stg}	$T_{op} \le T_{stg}$	- 40 + 125	°C					
V _{isol}	AC, 1 min.	2500	V					

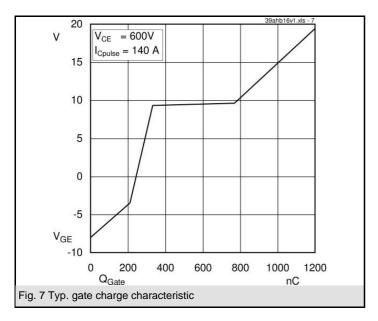

Characteristics		T _s = 25 °C, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units			
IGBT - Chopper								
V_{CEsat}	I_{Cnom} = 140 A, T_j = 25 (125) °C		1,7 (2)	2,1 (2,4)	V			
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 6$ mA	5	5,8	6,5	V			
V _{CE(TO)}	T _j = 25 (125) °C		1 (0,9)	1,2 (1,1)	V			
r _T	$T_j = 25 (125) ^{\circ}C$		5 (7,9)	6,4 (9,3)	mΩ			
C _{ies}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		11,2		nF			
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		1,9		nF			
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		1,5		nF			
$R_{th(j-s)}$	per IGBT		0,3		K/W			
t _{d(on)}	under following conditions		80		ns			
t _r	$V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$		40		ns			
t _{d(off)}	I _{Cnom} = 140 A, T _j = 125 °C		500		ns			
t _f	$R_{Gon} = R_{Goff} = 5 \Omega$		100		ns			
E _{on}	inductive load		19,9		mJ			
E _{off}			17,3		mJ			
Diode - Chopper								
$V_F = V_{EC}$	I _{Fnom} = 140 A, T _j = 25 (125) °C		1,5 (1,5)	1,7 (1,7)	V			
$V_{(TO)}$	T _i = 25 (125) °C		1 (0,8)	1,1 (0,9)	V			
r _T	T _j = 25 (125) °C		3,6 (5)	4,3 (5,7)	mΩ			
R _{th(j-s)}	per diode		0,4		K/W			
I _{RRM}	under following conditions		210		Α			
Q_{rr}	$I_{Fnom} = 140 \text{ A}, V_{R} = 600 \text{ V}$		38		μC			
E _{rr}	$V_{GE} = 0 \text{ V}, T_{i} = 125 ^{\circ}\text{C}$		16,2		mJ			
	di _F /dt = 4300 A/μs							

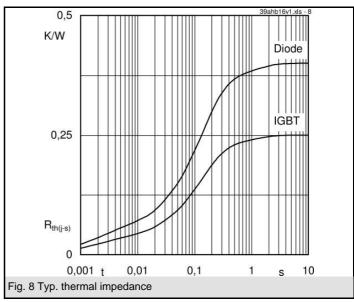


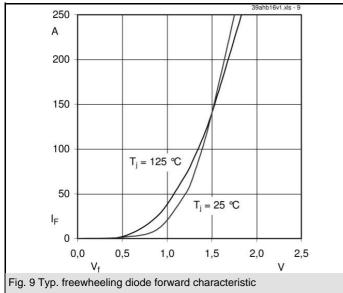

Characteristics		T _s = 25 °C, unless otherwise specified							
Symbol	Conditions	min.	typ.	max.	Units				
Diode - Rectifier									
V_{F}	I_{Fnom} = 90 A, T_j = 25 °C		1,2		V				
V _(TO)	T _i = 150 °C		0,8		V				
r _T	$T_{j} = 150 ^{\circ}\text{C}$		4		mΩ				
$R_{th(j-s)}$	per diode		0,5		K/W				
Thyristor - Rectifier									
V _T	I_{Fnom} = 200 A, T_i = 25 (125) °C			1,65 (1,6)	V				
$V_{T(TO)}$	T _i = 125 °C			0,9	V				
r _T	T _i = 125 °C			3,5	mΩ				
V_{GT}	T _j = 25 °C			3	V				
I _{GT}	T _j = 25 °C	150			mA				
I _H	$T_j = 25 ^{\circ}\text{C}$		150		mA				
IL	T _j = 25 °C		300		mA				
dv/dt _(cr)	T _j = 125 °C			1000	V/µs				
di/dt _(cr)	$T_{j} = 125 ^{\circ}\text{C}$			100	A/µs				
$R_{th(j-s)}$	per thyristor		0,5		K/W				
Temperature Sensor									
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω				
Mechanic	Mechanical Data								
w			95		g				
M_s	Mounting torque	2		2,5	Nm				

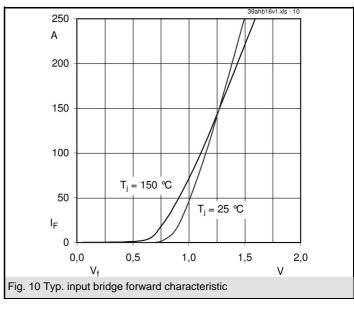

2 13-02-2009 LAN © by SEMIKRON

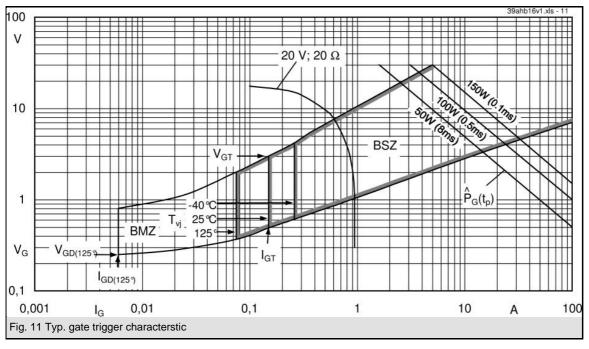


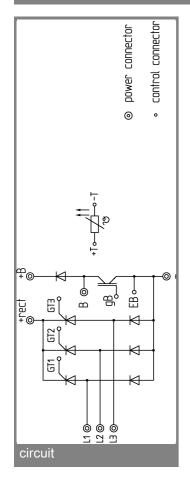


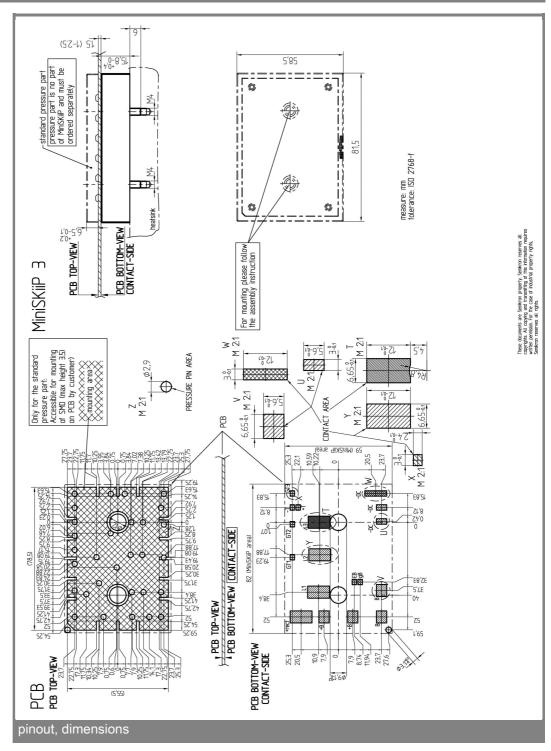












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.