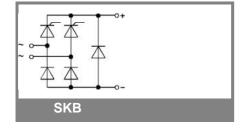
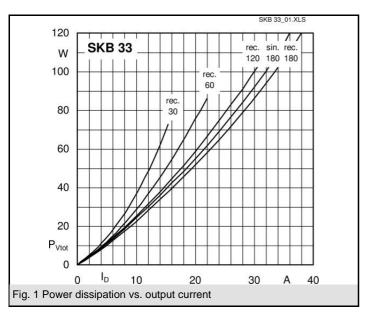


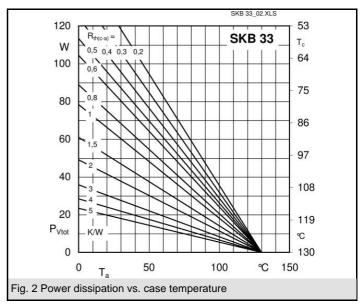
Controllable Bridge Rectifiers

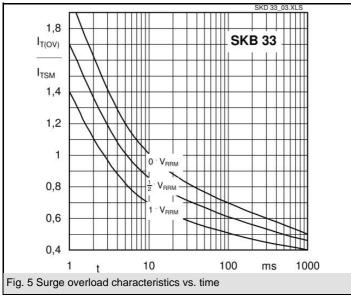
SKB 33

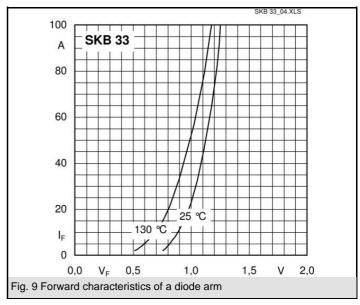
Features

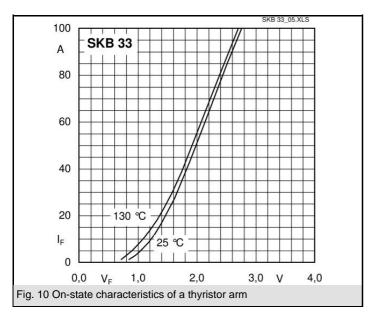

- · Half controlled, single phase rectifier with freewheeling diode
- Isolated metal case with screw terminals
- Blocking voltage up to 1200 V
- High surge currentsEasy chassis mounting

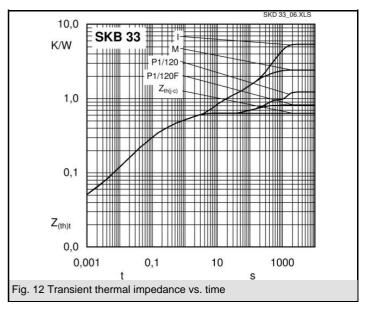

Typical Applications

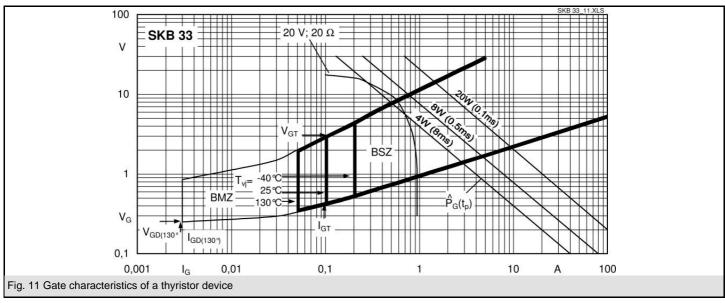

- Power supplies for electronic equipment
- DC motors
- · Field rectifiers for DC motors
- · Battery charger rectifiers
- 1) Freely suspended or mounted on an
- 2) Mounted on a painted metal sheet of min. 250 x 250 x 1 mm

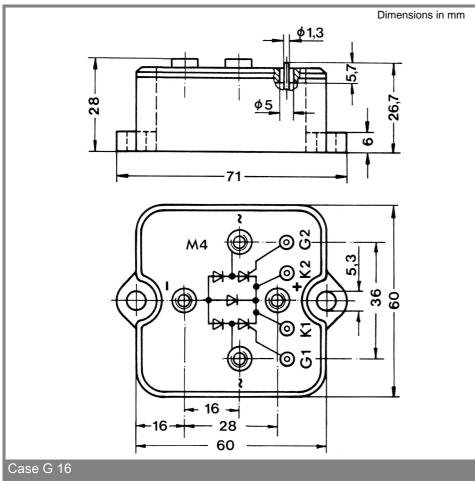

V_{RSM}	V_{RRM}, V_{DRM}	I _D = 33 A (full conduction)
V	V	$(T_c = 62 ^{\circ}C)$
300	200	SKB 33/02
500	400	SKB 33/04
700	600	SKB 33/06
900	800	SKB 33/08
1100	1000	SKB 33/10
1300	1200	SKB 33/12


Symbol	Conditions	Values	Units
I _D	T _a = 45 °C	6,5	Α
	isolated 1)		
	T _a = 45 °C; chassis ²⁾	14	Α
	T _a = 45 °C; P1A/120	24	Α
	T _a = 35 °C; P1A/120 F	32	Α
I _{TSM} , I _{FSM}	T_{vj} = 25 °C; 10 ms	370	Α
	$T_{vj} = 130 ^{\circ}\text{C}; 10 \text{ms}$	340	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	680	A²s
	T_{vj} = 130 °C; 8,3 10 ms	580	A²s
V_T	$T_{v_i} = 25 ^{\circ}\text{C}; I_T = 75 \text{A}$	max. 2,4	V
$V_{T(TO)}$	$T_{vj}^{'}$ = 130 °C;	max. 1	V
r _T	$T_{vj} = 130 ^{\circ}C$	max. 15	mΩ
I _{DD} ; I _{RD}	T_{vj} = 130 °C; V_{DD} = V_{DRM} ; V_{RD} = V_{RRM}	max. 10	mA
t _{gd}	$T_{vj} = 25 \text{ °C}; I_G = 1 \text{ A}; di_G/dt = 1 \text{ A/}\mu\text{s}$	1	μs
t _{gr}	$V_D = 0.67 \cdot V_{DRM}$	1	μs
(dv/dt) _{cr}	T _{vi} = 130 °C	max. 200	V/µs
(di/dt) _{cr}	$T_{v_i}^{\ j}$ = 130 °C; f = 50 Hz	max. 50	A/µs
t _q	T _{vj} = 130 °C; typ.	80	μs
I _H	$T_{vj} = 25 ^{\circ}\text{C}$; typ. / max.	20 / 200	mA
IL	T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.	80 / 400	mA
V _{GT}	$T_{v_i} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 3	V
I _{GT}	$T_{v_i} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 100	mA
V_{GD}	$T_{vj} = 130 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	$T_{vj} = 130 ^{\circ}\text{C}; \text{d.c.}$	max. 3	mA
R _{th(j-c)}	per thyristor / diode	2,6	K/W
,	total	0,65	K/W
$R_{th(c-s)}$	total	0,06	K/W
T _{vi}		- 40 + 130	°C
T _{stg}		- 55 + 150	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3000 (2500)	V
M _s	to heatsink	5 ± 15 %	Nm
M_t	to terminals	3 ± 15 %	Nm
m		250	g
Case		G 16	









This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.